Publicaciones Recientes
Condición necesaria y suficiente para cíclicos
Sea PQRS un cuadrilátero tal que sus lados opuestos PR y QS se cortan en un punto T. Demostrar que PQRS es cuadrilátero cíclico si y sólo si $TR\cdot TP=TS\cdot TQ.$
El lugar geométrico de la reflexión de un punto
Sean $ P$ un punto en el interior de una circunferencia $\mathcal{C}$ y $ M$ un punto sobre $\mathcal{C}$. Definamos $ N$ el punto sobre $\mathcal{C}$ tal que el ángulo $\measuredangle MPN = 90^{\circ}$ (en sentido contrario de las manecillas del reloj). Llamemos $P'$ el punto que resulta de reflejar $ P$ con respecto a $MN$.
Construcción de una circunferencia ortogonal
Sea dada una circunferencia $c$. Demostrar que el siguiente procedimiento produce una circunferencia ortogonal a $c$ con centro en un punto $P$ fuera de $c$.
1) Trazamos las tangentes a $c$ desde $P$ ubicando los puntos de tangencia $T$ y $T'$.
2) Trazamos la circunferencia con centro en $P$ y radio $PT$. Esta es la circunferencia ortogonal pedida.
Caracterización del eje radical
Demostrar que el eje radical de dos circunferencias es el lugar geométrico de los puntos que cumplen la propiedad de que el producto de la suma por la diferencia de sus distancias a los centros es una constante.
Valor de la potencia de un punto
Demostrar que la potencia de un punto $P$ respecto a la circunferencia $c$ con centro en $O$ y radio $ r $ es $PO^2-r^2$
Construcción del inverso
Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el inverso P' de P con respecto a la circunferencia c.
1) Trazar la recta OP.
2) Trazar una de las tangentes desde P a c, y llamar T al punto de tangencia.
Trazar una tangente a una circunferencia
Sea dada una circunferencia c de centro O y radio r, y un punto P fuera del círculo. Demostrar que el siguiente procedimiento produce el punto de tangencia T de la tangente que pasa por P.
1) Trazar el segmento OP.
2) Trazar la circunferencia de diámetro OP y llamar T a uno de los puntos de intersección con c.
Altura de un triángulo rectángulo
Sea AP la altura de A respecto a la hipotenusa BC del triángulo rectángulo ABC. Demostrar que se cumplen las proporciones PB/BA=BA/BC y BP/PA=PA/PC.
Cuerda común y línea de centros
La línea de centros (recta que pasa por los centros) de dos círculos que se intersectan es mediatriz de su cuerda común.
Cuerda y tangentes comunes
La cuerda común de dos círculos pasa por el punto medio de la tangente común a los círculos. Demostrarlo.