Publicaciones Recientes

Problema

P6 OMM 1997. Un quinto más suma de fracciones

Enviado por jmd el 11 de Julio de 2010 - 11:37.

Pruebe que el número 1 se puede escribir de una infinidad de maneras distintas en la forma $$1 = \frac{1}{5} + \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}$$ donde $ n $ y $a_1, a_2, \ldots , a_n$ son enteros positivos y $5 <a_1< a_2 <\ldots <a_n$

 

Problema

P5 OMM 1997. Triángulo formado por cevianas

Enviado por jmd el 11 de Julio de 2010 - 11:32.

Sean $P, Q, R$ puntos sobre los lados de un triángulo $ABC$ con $P$ en el segmento $BC$, $Q$ en el segmento $AC$ y $R$ en el segmento $BA$, de tal manera que si $A'$ es la intersección de $BQ$ con $CR$, $B'$ es la intersección de $AP$ con $CR$, y $C'$ es la intersección de $AP$ con $BQ$, entonces $AB' = B'C',BC' = C'A'$, y $CA' = A'B'$. Calcule el cociente del área del triángulo $PQR$ entre el área del triángulo $ABC$.

Problema

P4 OMM 1997. Planos determinados por seis puntos

Enviado por jmd el 11 de Julio de 2010 - 11:31.

Dados 3 puntos no alineados en el espacio, al único plano que los contiene le llamamos plano determinado por los puntos. ¿Cuál es el mínimo número de planos determinados por 6 puntos en el espacio si no hay 3 alineados y no están los 6 en un mismo plano?

Problema

P3 OMM 1997. Dieciseis vecinos en una cuadrícula

Enviado por jmd el 11 de Julio de 2010 - 11:29.

En una cuadrícula de 4 × 4 se van a colocar los números enteros del 1 al
16 (uno en cada casilla).

  • (a) Pruebe que es posible colocarlos de manera que los números que aparecen en cuadros que comparten un lado tengan una diferencia menor o igual a 4.
  • (b) Pruebe que no es posible colocarlos de tal manera que los números que aparecen en cuadros que comparten un lado tengan diferencia menor o igual a 3.
Problema

P2 OMM 1997. Alineados con centroide... ¿Menelao?

Enviado por jmd el 11 de Julio de 2010 - 11:26.

En un triángulo $ABC$, sean $P$ y $P'$ puntos sobre el segmento $BC$, $Q$ en  $CA$ y $R$ sobre $AB$, de forma que $$\frac{AR}{RB}=\frac{BP}{PC}=\frac{CQ}{QA}=\frac{CP'}{P'B}$$
Sean $G$ el centroide del triángulo $ABC$ y $K$ el punto de intersección de las rectas $AP'$ y $RQ$. Demuestre que los puntos $P, G, K$ son colineales.

Problema

P1 OMM 1997. Primo función de un primo

Enviado por jmd el 11 de Julio de 2010 - 11:24.

Encuentre todos los números primos positivos $p$ tales que $8p^4 - 3003$ también es un primo positivo.

Problema

P6 OMM 1996. Perpendiculares que miden el lado que cortan

Enviado por jmd el 11 de Julio de 2010 - 10:45.

En la figura se muestra un triángulo acutángulo $ABC$ en el que la longitud de $AB$ es menor que la de $BC$ y la de $BC$ es menor que la de $AC$ . Los puntos $A', B'$ y $C'$ son tales que $AA'$ es perpendicular a $BC$, y la longitud
de $AA'$ es igual a la de $BC$; $BB'$ es perpendicular a $AC$ y la longitud de $BB'$ es igual a la de $AC$; $CC'$ es perpendicular a $AB$ y la longitud de $CC'$ es igual a la de $AB$. Además el ángulo $AC'B$ es de 90 grados. Demuestra que $A', B'$ y $C'$ son colineales.

Problema

P5 OMM 1996. Recorre los cuadros y suma sus números

Enviado por jmd el 11 de Julio de 2010 - 10:36.

En una cuadrícula de $n \times n$ se escriben los números del 1 al $n^2$ en el orden habitual (de izquierda a derecha y de arriba a abajo). Como ejemplo se ilustra el caso $n = 3$: $$1 ~2 ~3$$ $$4 ~5 ~6$$ $$7 ~8 ~9$$

Llamemos camino en la cuadrícula a una sucesión de pasos de un cuadro a otro desde el cuadro 1 hasta el $n^2$, de tal manera que en cada paso el movimiento sea hacia la derecha o hacia abajo. Si $C$ es un camino, denotamos por $L(C)$ a la suma de los números por los que pasa el camino $C$.

Problema

P4 OMM 1996. Ocho distintos múltiplos de n

Enviado por jmd el 11 de Julio de 2010 - 10:32.

¿Para qué enteros $n \geq 2$ se pueden acomodar los números del 1 al 16 en los cuadros de una cuadrícula de $4×4$ (un número en cada cuadro, sin repetir números) de tal manera que las 8 sumas de los números que quedan en cada fila y en cada columna sean múltiplos de $n$, y que estos 8 múltiplos sean todos distintos entre sí?
 

Problema

P3 OMM 1996. Cubrir cuadrícula con dominós con una condición

Enviado por jmd el 11 de Julio de 2010 - 10:30.

Demuestra que no es posible cubrir una cuadrícula de 6cm × 6 cm con 28 rectángulos de 2cm × 1cm, de tal manera que cada una de las rectas de longitud 6cm que forman la cuadrícula y que están en el interior de la misma pase por uno de los rectángulos. Demuestra también que sí es posible cubrir una cuadrícula de 6cm × 5cm con 15 rectángulos de 2cm × 1cm de tal manera que cada una de las rectas de 5cm o 6 cm que forman la cuadrícula y que están en el interior de la misma pase por el centro de por lo menos uno de los rectángulos.

Distribuir contenido