Publicaciones Recientes
Una sucesión no acotada
Considere la sucesión $a_0, a_1, a_2,\dots $ de enteros construida como sigue:
-
$ a_0 > 5 $ es impar,
-
$ a_{n+1} = a_n/2 $ si $ a_n $ es par,
-
y $a_{n+1} ={a_n}^2-5$ si $ a_n $ es impar.
Demostrar que la sucesión es no acotada.
USAMTS (Problema 5)
Sea c un número real. La sucesión $a_1,a_2, a_3,\dots$ está definida por $a_1=c$ y $a_n = 2a_{n-1}^2 -1$ , para todo $n \geq 2$ . Encontrar todos los valores de para los cuales $a_n <0$ para toda n.
Diagrama de Lewis Carroll
Es una variante del diagrama de Venn-Euler que facilita la clasificación de un universo $S$de objetos según tres atributos $a$, $b$ y $c$. La clasificación es dicotómica: cada objeto de $S$ ya sea tiene la propiedad o atributo $a$, $b$, o $c$ o bien no la tiene (esto último se representa con ¬$a$, ¬$b$, o ¬$c$).
Triángulo Rectángulo 2
Sea ABC un triángulo rectángulo con ángulo recto en C, denotemos con R al punto donde la circunferencia inscrita es tangente al lado BC. Pruebese que $ AR \cdot RB $ es igual al área de ABC.
Retroducción en un problema de números
Al estudiante A se le da a conocer un número a y la información de que a es el producto xy de dos enteros positivos. Al estudiante B se le da a conocer un número b y la información de que es la suma x+y de los mismos números cuyo producto es el número dado a A. Además, a ambos se les hace saber que x, y son números enteros mayores que 1 y su suma es menor que 100. Después de que los estudiantes obtienen esta información (y después de haberla meditado un rato) tiene lugar el siguiente diálogo: