Publicaciones Recientes

Problema

P8. OMM 1988. Esfera en octaedro

Enviado por jmd el 5 de Julio de 2010 - 19:20.

Calcule el volumen del octaedro que circunscribe a una esfera de radio 1.
 

Problema

P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}

Enviado por jmd el 5 de Julio de 2010 - 19:18.

Si A y B son subconjuntos ajenos del conjunto {1,2,,m} y la suma de los elementos de A es igual a la suma de los elementos de B, pruebe que el número de elementos de A y también de B es menor que m/2
 

Problema

P6. OMM 1988. Lugar geométrico del incentro

Enviado por jmd el 5 de Julio de 2010 - 19:13.

Considere dos puntos fijos B y C de una circunferencia W. Encuentre el lugar geométrico de las intersecciones de las bisectrices de los triángulos ABC, cuando A es un punto que recorre W.

Problema

P5. OMM 1988. Manipulación algebraica con el MCD

Enviado por jmd el 5 de Julio de 2010 - 19:12.

Si a y b son dos enteros positivos primos relativos y n es un entero, pruebe que el máximo común divisor de a2+b2nab y a+b divide a n+2

Problema

P4. OMM 1988. Ocho enteros entre uno y ocho

Enviado por jmd el 5 de Julio de 2010 - 19:07.

¿Cuántas maneras hay de escoger ocho enteros a1,a2,a3,,a8 no necesariamente distintos, tales que 1a1a88?
 

Problema

P3. OMM 1988. Área de triángulo de tangentes comunes

Enviado por jmd el 5 de Julio de 2010 - 19:05.

Considere dos circunferencias tangentes exteriormente y de radios distintos; sus tangentes comunes forman un triángulo. Calcule el área de dicho triángulo en términos de los radios de las circunferencias.
 

Problema

P2. OMM 1988. Expresiones equiresiduales (módulo 19)

Enviado por jmd el 5 de Julio de 2010 - 18:56.

Si a y b son enteros positivos, pruebe que 19 divide a 11a+2b si y sólo si 19 divide a 18a+5b
 

Problema

P8. OMM 1987. El último de la primera nacional (de geometría tridimensional)

Enviado por jesus el 5 de Julio de 2010 - 11:41.
  1. Tres rectas en el espacio l, m, n concurren en el punto S y un plano perpendicular a m corta a l, m, n en A, B y C respectivamente. Suponga que los ángulos ASB y BSC son de 45° y que el ángulo ABC es recto. Calcule el ángulo ASC.
  2. Si un plano perpendicular a l corta a l, m, n en P, Q y R respectivamente y si SP = 1, calcule los lados del triángulo PQR.
Problema

P7. OMM 1987. Problema clásico de cocientes de polinomios de la OMM

Enviado por jesus el 5 de Julio de 2010 - 10:29.

Demuestre que si n es un entero positivo, entonces n2+n1n2+2n es una fracción irreducible (simplificada).

Problema

P6. OMM 1987. Divisibilidad clásico de la OMM

Enviado por jesus el 4 de Julio de 2010 - 16:14.

Demuestre que para cualquier entero positivo n, el número (n3n)(58n+4+34n+2) es múltiplo de 3804.

Distribuir contenido