Publicaciones Recientes
Problema de coolinealidad
Sean $C_1, C_2, C_3$ tres circunferencias tangentes exteriores dos a dos. Definamos los siguientes puntos; $R=C_1 \cap C_2$ $S=C_1 \cap C_3$ y $T=C_2 \cap C_3$ , sean $X, Y$ los puntos sobre $C_2, C_3$ de modo que $XY$ sea la tangente comun y esta no pase por $C_1$. Sea $J$ la interseccion de la tangente a $C_1, C_2$ por $R$ y a la tangente comun a $C_1, C_3$ por $S$.
Áreas iguales en un trapecio
Demuestra que para cualquier trapecio ABCD, las áreas de las triángulos sombreados son iguales.
![](https://www.matetam.com/sites/default/files/imagecache/teaser/u4/areas_trapecio.png)
Sumas
Considere las sumas
$$S=4\cdot 5-5\cdot 6 +\ldots - 2009\cdot 2010$$
$$T=3\cdot 6-4\cdot 7+\ldots -2008\cdot 2011$$
Calcular el valor de $S-T$
Mayo 29, Etapa Regional de la XXIII OMM Tamaulipas
La región sur decidió unirse a la centro y norte y aplicará el examen de la etapa regional el día 29 de mayo. Así que en las tres regiones el concurso regiones será el día 29 de mayo.
![](https://www.matetam.com/sites/default/files/imagecache/teaser/userfiles/logoRegiones.png)
Producto de diagonales en un polígono regular
Sea $A_1, A_2, \dots, A_n$ los $ n $ vértices de un polígono regular con circunferencia circuncrita de radio $R$, Demuestra que:
OMM Tamaulipas: concurso regional aplazado
Posiblemente hasta el 29 de mayo, el concurso regional entra en una fase de espera debido a la alerta sanitaria nacional --con lo cual, el estatal se aplazaría hasta el 26 de junio.
Encontrar las soluciones de la igualdad
Encuentre todos los números primos $ p, q $ tales que $ p + q $ = $(p-q)^3$.
Fecha del concurso regiones, decisión de cada sede...
--pero conviene mantener la hipótesis de que se realizará el viernes 8 según programa. (Excepto para la región sur que lo realizará el 22 de mayo... y quizá las otras dos secundemos la propuesta del CETis 109)
Isósceles semejantes sobre un triángulo
Consideremos $A'$, $B'$ y $C'$ tres puntos en el exterior del triángulo $ ABC $, de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son todos isósceles semejantes y de bases BC, CA y AB respectivamente, Demuestra que $AA'$, $BB'$ y $CC'$ concurren.
Equiláteros en los lados de un triángulo
Este es un problema con la misma figura del triángulo de napoleón.
Consideremos los puntos $A'$, $B'$ y $C'$ puntos fuera del triángulos $ ABC $ de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son equiláteros. Demuestra que $AA'$, $BB'$ y $CC'$ concurren y son de la misma longitud.
![Publicaciones Recientes Distribuir contenido](/misc/feed.png)