Publicaciones Recientes
Recordatorio: el concurso estatal, es el 27 de junio...
El tiempo disponible para resolver los cuatro problemas del concurso estatal de la OMM tamaulipeca es de 4 horas.
Free riders, personas non gratas para la OMM tamaulipeca
Alexis Garza Briones.........................R.
Post pre-estatal
Faltando 11 días para el concurso estatal (OMM Delegación Tamaulipas), y dado que todos ya están de vacaciones (o casi) les sugiero estudiar (o de perdido echarle un ojo al examen del concurso estatal del año pasado). Está en el link Descargas del menú.
El mulo y la burra generalizado (Problema 4, regiones 2008)
Abel le dice a Bárbara: si me dieras n yo tendría dos veces lo que a ti te quede. Bárbara le contesta: si tú me dieras 2 yo tendría n veces lo que a ti te quede. Encontrar todos los valores enteros positivos posibles de n.
ONMAS 2008 Nivel 1, Problema4
Francisco olvidó la clave de su tarjeta de banco y quiere realizar un retiro. Apenas recuerda que su clave contiene 4 dígitos y cumplen lo siguiente
- ninguno de los dígitos es 0 ni es mayor que 5
- no hay dígitos repetidos
- no hay dos dígitos adyacentes que sean números consecutivos
- la clave es un múltiplo de 4
Por ejemplo, el código 5413 no cumple porque el 4 y el 5 son cifras consecutivas, y el código 1135 no cumple porque se repite el 1. Francisco, que tiene muy mala suerte, probó todos los casos posibles y funcionó hasta que probó la última posibilidad. ¿Cuántos casos probó Francisco?
Solución de una cuadrática (Problema 3, regiones 2008)
Sea dado un segmento AB de longitud b. Por B se levanta una perpendicular a AB, y sobre ella se fija un punto O tal que BO=a/2. Se traza a continuación la circunferencia de centro O y radio a/2. La recta AO corta en P y Q a la circunferencia (P más cerca de A que Q). Si llamamos x a la longitud de AP, explicar por qué y cómo esta construcción resuelve la ecuación cuadrática $x^2+ax=b^2$. (Nota: de hecho sólo obtiene la raíz positiva de la ecuación, si es que existe.)
ONMAS 2008 Nivel 1, Problema 3
Juan tiene que llevar una ficha desde la esquina A hasta la esquina B, moviéndola por las líneas de la cuadrícula del tablero. La ficha puede moverse hacia arriba, hacia abajo, hacia la derecha o hacia la izquierda (la ficha puede pasar varias veces por el mismo punto). Cada vez que la ficha se mueve en sentido horizontal, Juan anota el número de la columna por la que atraviesa. Cuando la ficha finalmente llega a la esquina B, Juan multiplica todos los números que anotó. Encuentra todos los caminos donde el producto de los números anotados por Juan es 8640. Justifica tu respuesta.
Problema 2, regiones 2008 (La cola del teatro)
En la cola de la taquilla del teatro están formadas 4 personas con un billete de 50 pesos cada una y 3 con uno de 100 pesos cada una. El boleto cuesta 50 pesos y la caja está vacía al empezar la venta de boletos. (Nota: las personas en la fila sólo se distinguen por el tipo de billete que traen, y cada una trae exactamente un billete.)
-
a) ¿En cuántas ordenaciones diferentes la cola no se detiene por falta de cambio?
-
b) ¿Cuántas ordenaciones diferentes hay –sin importar si detienen o no la cola?
Problema 1, regional 2008
La suma de las áreas de dos cuadrados es 400, y el lado de uno mide 3/4 del lado del otro.
a) ¿Cuánto mide el lado de cada uno de los cuadrados?
b) ¿Cuánto medirían si la suma de las áreas fuese 800?
Selecciones de Región
A continuación pueden descargar las listas de seleccionados de las tres regiones de Tamaulipas.
seleccion_norte
seleccion_centro
seleccion_sur
los saluda
jmd
PD: los problemas fueron los siguientes
Pr