Publicaciones Recientes

Problema

Nueve puntos en el plano

Enviado por jmd el 6 de Enero de 2012 - 19:24.

Dado cualquier conjunto de 9 puntos en el plano de los cuales no hay tres colineales, demuestre que para cada punto P del conjunto, el número de triángulos que tienen como vértices a tres de los ocho puntos restantes y a P en su interior, es par.

Problema

Borrado selectivo y sucesivo de números en una lista

Enviado por jmd el 6 de Enero de 2012 - 19:21.

Los números enteros del 1 al 2002, se escriben en una pizarra en orden creciente 1, 2, . . . , 2001, 2002. Luego, se borran los que ocupan el primer lugar, cuarto lugar, séptimo lugar, etc., es decir, los que ocupan los lugares de la forma 3k+1. En la nueva lista se borran los números que están en los lugares de la forma 3k+1. Se repite este proceso hasta que se borran todos los números de la lista. ¿Cuál fue el último número que se borró?

Problema

Cobertura imposible

Enviado por jmd el 5 de Enero de 2012 - 17:43.

Demostrar que es imposible cubrir un cuadrado de lado 1 con cinco cuadrados iguales de lado menor o igual que 1/2.

 

Problema

Naves marcianas en una cuadrícula

Enviado por jmd el 5 de Enero de 2012 - 17:40.

En un tablero de 2000×2001 cuadros de coordenadas enteras (x,y), 0x19990y2000, una nave se mueve de la siguiente manera:

Problema

Número máximo de subsucesiones aritméticas crecientes

Enviado por jmd el 5 de Enero de 2012 - 17:37.

Determinar el número máximo de progresiones aritméticas crecientes de tres términos que puede tener una sucesión a1<a2<...<an de n>3 números reales.

Nota: Tres términos ai,aj,ak de una sucesión de números reales forman una progresión aritmética creciente si ai<aj<ak y ajai=akaj.

Problema

Desigualdad para cardinalidades de subconjuntos

Enviado por jmd el 5 de Enero de 2012 - 17:32.

Sean S un conjunto de n elementos y S1,S2,,Sk subconjuntos de S (k2), tales que cada uno de ellos tiene por lo menos r elementos.  Demostrar que existen i y j, con 1i<jk tales que la cantidad de elementos comunes de Si y Sj es mayor o igual que rnk4(k1)

Problema

Incírculo y condición suficiente para isósceles

Enviado por jmd el 5 de Enero de 2012 - 17:29.

La circunferencia inscrita en el triángulo ABC tiene centro O y es tangente a los lados BC,AC y AB en los puntos X,Y y Z, respectivamente. Las rectas BO y CO intersectan a la recta YZ en los puntos P y Q, respectivamente.

Demostrar que si los segmentos XP y XQ tienen la misma longitud, entonces el triángulo ABC es isósceles.

Problema

Números charrúas

Enviado por jmd el 5 de Enero de 2012 - 16:45.

Decimos que un número natural n es "charrúa" si satisface simultáneamente las siguientes condiciones:

  • Todos los dígitos de n son mayores que 1.
  • Siempre que se multiplican cuatro dígitos de n, se obtiene un divisor de n.

Demostrar que para cada número natural k existe un número charrúa con más de k dígitos.

Problema

Área de un hexágono bonito

Enviado por jmd el 5 de Enero de 2012 - 16:34.

Un hexágono convexo se denomina bonito si tiene cuatro diagonales de longitud 1, cuyos extremos incluyen todos los vértices del hexágono.

  • (a) Dado cualquier número k, mayor que 0 y menor o igual que 1, encontrar un hexágono bonito de área k.
  • (b) Demostrar que el área de cualquier hexágono bonito es menor que 3/2.
Problema

Juego con un montón de piedras

Enviado por jmd el 5 de Enero de 2012 - 16:32.

Hay un montón de 2000 piedras. Dos jugadores juegan alternadamente, de acuerdo a las siguientes reglas:

  • (a) En cada jugada se pueden retirar 1, 2, 3, 4 ó 5 piedras del montón.
  • (b) En cada jugada esá prohíbido que el jugador retire la misma cantidad de piedras que retiró su oponente en la jugada previa.
  • (c) Pierde el jugador que en su turno no pueda realizar una jugada válida.

Determinar cuál jugador tiene estrategia ganadora y encontrarla.

Distribuir contenido