Publicaciones Recientes

Problema

P6 OMM 1998. Planos equidistantes a 5 puntos

Enviado por jmd el 11 de Julio de 2010 - 11:31.

Un plano en el espacio es equidistante a un conjunto de puntos si la distancia de cada punto al plano es la misma. ¿Cuál es el mayor número de planos equidistantes a 5 puntos de los cuales no hay 4 en un mismo plano?

Problema

P5 OMM 1998. Paralela si y sólo si... ¿Tales?

Enviado por jmd el 11 de Julio de 2010 - 11:28.

Sean B y C dos puntos de una circunferencia, y AB y AC las tangentes
desde un punto A. Sea Q un punto del segmento AC y P la intersección de BQ con la circunferencia. La paralela a AB por Q corta a BC en J. Demuestre que PJ es paralelo a AC si y sólo si BC2=ACQC.

Problema

P4 OMM 1998. Sumas de dígitos inversos (\times un dígito)

Enviado por jmd el 11 de Julio de 2010 - 11:23.

Encuentre todos los enteros que se escriben como 1a1+2a2++9a9 donde a1,a2,,a9 son dígitos distintos de cero que pueden repetir.

Problema

P3 OMM 1998. Octágono rojinegro

Enviado por jmd el 11 de Julio de 2010 - 11:20.

Cada uno de los lados y las diagonales de un octágono regular se pintan de rojo o de negro. Demuestre que hay al menos siete triángulos cuyos vértices son vértices del octágono y sus tres lados son del mismo color.

Problema

P2 OMM 1998. Rayos, ángulo, bisectriz, lugar geométrico...

Enviado por jmd el 11 de Julio de 2010 - 11:18.

Dos rayos l,m parten de un mismo punto formando un ángulo A, y P es un punto en l. Para cada circunferencia C, tangente a l en P, que corte a m en puntos Q y R, T es el punto donde la bisectriz del ángulo QPR corta a C. Describe la figura geométrica que forman los puntos T. Justifica tu respuesta.

Problema

P1 OMM 1998. Números suertudos

Enviado por jmd el 11 de Julio de 2010 - 11:14.

Un número es suertudo si al sumar los cuadrados de sus cifras, y repetir esta operación suficientes veces, obtenemos el número 1. Por ejemplo, 1900 es suertudo, ya que 190082681001. Encuentre una infinidad de parejas de enteros consecutivos, donde ambos números sean suertudos.

Problema

P6 OMM 1997. Un quinto más suma de fracciones

Enviado por jmd el 11 de Julio de 2010 - 10:37.

Pruebe que el número 1 se puede escribir de una infinidad de maneras distintas en la forma 1=15+1a1+1a2++1an donde n y a1,a2,,an son enteros positivos y 5<a1<a2<<an

 

Problema

P5 OMM 1997. Triángulo formado por cevianas

Enviado por jmd el 11 de Julio de 2010 - 10:32.

Sean P,Q,R puntos sobre los lados de un triángulo ABC con P en el segmento BC, Q en el segmento AC y R en el segmento BA, de tal manera que si A es la intersección de BQ con CR, B es la intersección de AP con CR, y C es la intersección de AP con BQ, entonces AB=BC,BC=CA, y CA=AB. Calcule el cociente del área del triángulo PQR entre el área del triángulo ABC.

Problema

P4 OMM 1997. Planos determinados por seis puntos

Enviado por jmd el 11 de Julio de 2010 - 10:31.

Dados 3 puntos no alineados en el espacio, al único plano que los contiene le llamamos plano determinado por los puntos. ¿Cuál es el mínimo número de planos determinados por 6 puntos en el espacio si no hay 3 alineados y no están los 6 en un mismo plano?

Problema

P3 OMM 1997. Dieciseis vecinos en una cuadrícula

Enviado por jmd el 11 de Julio de 2010 - 10:29.

En una cuadrícula de 4 × 4 se van a colocar los números enteros del 1 al
16 (uno en cada casilla).

  • (a) Pruebe que es posible colocarlos de manera que los números que aparecen en cuadros que comparten un lado tengan una diferencia menor o igual a 4.
  • (b) Pruebe que no es posible colocarlos de tal manera que los números que aparecen en cuadros que comparten un lado tengan diferencia menor o igual a 3.
Distribuir contenido