Publicaciones Recientes

Problema

r,r+p,r+2p primos , r=?

Enviado por jmd el 1 de Junio de 2014 - 07:02.

3.N. Encontrar todos los números primos que pueden escribirse como la diferenciade dos primos y como la suma de dos primos. (Nota: el 1 no es primo.)

Problema

Un problema guiado --de geometría

Enviado por jmd el 1 de Junio de 2014 - 06:58.

2.G. Sean ABC un triángulo isósceles con AB=AC, y P en AB y Q en AC puntostales que AP=CQ. Sea O la intersección de las mediatrices de PQ y AC.

a) Demostrar que APO y CQO son triángulos congruentes.
b) Demostrar que APOQ es un cuadrilátero cíclico.
c) Demostrar que AO es bisectriz del ángulo BAC.


(Nota: Para el inciso b puedes usar el resultado del a (sin demostración); para el cpuedes usar los resultados de a y b.)

Problema

¿Cuál fórmula? ¡Genera la lista!

Enviado por jmd el 1 de Junio de 2014 - 06:55.

1.C. ¿Cuántos números del 10 al 99 son tales que sus dígitos están en orden decreciente? Nota: 31 cumple pero no el 44 ni el 56.

Noticia

XXVIII OMM Preselección Tamaulipas

Enviado por jmd el 30 de Mayo de 2014 - 18:13.

Hoy viernes 30 de mayo se celebró en las instalaciones de la UAMCEH-UAT el concurso estatal OMM Tamaulipas 2014. La lista de los preseleccionados es la siguiente:

NOMBRE                                           INSTITUCIÓN    LUGAR       PTS

Problema

Coeficientes y raíces en tres cuadráticas

Enviado por jmd el 25 de Mayo de 2014 - 10:18.

2.6. Considere las ecuaciones cuadráticas
x2b1x+c1=0x2b2x+c2=0x2b3x+c3=0
con b1.b2,b3,c1,c2,c3 números reales diferentes.
¿Es posible que los números b1,b2,b3,c1,c2,c3 sean las raíces de las ecuaciones cuadráticas en algún orden?

Problema

Configuración con acutángulo isósceles

Enviado por jmd el 25 de Mayo de 2014 - 10:16.

2.5. Sea ABC un triángulo acutángulo isósceles con AC=BC. M y N son los puntos medios de AC y BC, respectivamente. La altura desde A corta a la prolongación de MN en X y la altura desde B corta a la prolongación de MN en Y. Z es la intersección de AY con BX. Además, sucede que los triángulos ABC y XYZ son semejantes. Determina la razón ACAB.

Problema

Tabla con números sin 3 o 7

Enviado por jmd el 25 de Mayo de 2014 - 10:15.

2.4. Se tiene una tabla con siete columnas A,B,C,D,E,F,G y se coloca en ella los números naturales que no contienen al 3 o al 7 en su desarrollo decimal. Se empieza en la casilla C1, como se muestra. ¿En cuál columna y renglón queda el 2014?

Problema

Espiral con el 2014 en cuadrícula

Enviado por jmd el 25 de Mayo de 2014 - 10:13.

2.3. Sobre una cuadrícula se coloca 2014 veces el número 2014 (un dígito en cada casilla) siguiendo una espiral como se muestra en la figura. Sea M la suma de los números sobre las casillas verdes y N la suma de los números sobre las casillas amarillas. Calcula la diferencia entre M y N.

Problema

Ángulo postgiro

Enviado por jmd el 25 de Mayo de 2014 - 10:10.

2.2. Sea ABCD un cuadrilátero que cumple: AB=AD,AC=BC+CD y los ángulos ABC y CDA suman 180 grados. El triángulo ABC se gira con centro en A formando el triángulo AB'C', como se muestra en la figura, hasta que el punto B' coincida con D, formándose el triángulo ADC'. Encuentra la medida del ángulo ACC'.

Problema

Huevos y chilaquiles en buffet

Enviado por jmd el 25 de Mayo de 2014 - 10:09.

2.1. Cierto día en el restaurante La Cascada prepararon para el buffet de desayuno una charola de cada uno de los siguientes siete platillos: huevos con tocino, frijoles con queso, huevos con jamón, huevos a la mexicana, chilaquiles rojos, chilaquiles con huevo y chilaquiles verdes. Se le ordena al mesero acomodar las charolas de los platillos, alineadas en la barra, de forma tal que las que contengan huevo queden juntas y que las que contengan chilaquiles queden juntas.

Distribuir contenido