Filosóficos
Sobre la utilidad de las construcciones geométricas
De mis tiempos de escuelante recuerdo dos construcciones geométricas: el triángulo equilátero y el hexágono. Nada más fácil que tomar el compás, abrirlo a la medida del lado y hacer arcos que marcan los vértices. La justificación del por qué funcionan no era algo que se preguntara por el profesor ni era de nuestro interés adolescente.
El estudiante medianamente responsable hace las tareas de acuerdo al procedimiento, interpretado éste de manera literal, y se olvida (mejor dicho, se va con los amigos). Tampoco se preguntaba uno para qué servía eso.
Si tienes la teoría, la práctica es más eficaz
El problema 1 del concurso estatal
Demostrar que el número 100...001, el cual tiene doscientos ceros intermedios, es múltiplo de 1001
pone en juego uno de los conocimientos más elementales de las matemáticas escolares: el significado de "múltiplo" y el algoritmo de la división. No se necesita más para resolverlo.
El método directo es emprender la división entre 1001. Pero son muchas cifras... tantas que no caben todas en la hoja de papel. ¿Entonces? Bueno, lo que está obligado a hacer el cognizador es a idear una estrategia alternativa.
Sobre el significado de intuición
Hace algún tiempo escribí sobre la paradoja denominada de Monty Hall (Ver mi post Hagamos un trato.) Esa paradoja es paradoja precisamente porque la intuición falla en dar una solución correcta.
En lo que sigue, añado otras dos paradojas para demostrar la falibilidad de nuestra intuición. (Disclaimer: no es una tacha a la intuición, es solamente el reconocimiento de que puede fallar --"no la quiero perfecta, me basta con que funcione la mayoría de las veces")
Trasquilar la borrega... ¿te hace sentido?
Seguramente la frase "trasquilar la borrega" no te hace sentido pero... quizá al terminar de leer este post le puedas atribuir un sentido...
Este domingo que pasó me desperté con la idea de ponerme a escribir un post para MaTeTaM sobre el último grito de la moda en educación matemática o, mejor dicho, en didáctica de las matemáticas (por lo menos en USA), denominado reasoning and sense making, pues entre semana había navegado un poco en la Web investigando sobre la guerra de las matemáticas (Math Wars) en Estados Unidos.
Álgebra retórica (a propósito del problema 9 ciudades)
Es bien conocido dentro de la educación matemática que, en sus orígenes, el álgebra no usaba símbolos sino que el problem solving se describía totalmente utilizando el lenguaje natural. A esta etapa del álgebra se le llama fase retórica (antes de Diofanto). Después vendría la fase sincopada o lacónica, la cual se habría dado entre Diofanto y Vieta y, finalmente, llegaría la fase simbólica que inicia con Vieta. (Se dice que fue un alemán del siglo XIX quien primero identificó y nombró las tres fases del desarrollo del álgebra.)
El Concurso Ciudades, Tamaulipas 2010
Trigonometría en ENLACE Bachillerato 2010
Competencias expertas en el problem solving --ilustrado con two loci
Las fórmulas de Vieta: un tema inadaptado... a la ecología escolar
Dentro del hábitat de la escuela y las matemáticas escolares se tiene una dinámica propia impuesta por los deberes administrativos de los profesores y los usos y costumbres de los alumnos y los profesores.
En ese medio ambiente escolar, algunos temas y métodos de enseñanza se adaptan mejor que otros. Y hay algunos que nunca han logrado adaptarse y, en consecuencia, se han extinguido o se han refugiado en nichos más favorables. (Como se sabe, las ardillas se refugian en los bosques --si son ebanales mejor, pues también hay mahuacatas.) Consecuencia: han desaparecido de los textos escolares.
La paradoja del actor (en la enseñanza de las matemáticas)
En su libro Fundamentos y Métodos de la Didáctica de la Matemáticas, Guy Brousseau compara al profesor de matemáticas con un actor. Pues el conocimiento matemático que el profesor enseña "es un objeto cultural, citado o recitado. Y su reproducción al momento deseado es pues mucho más comparable a una obra de teatro representada para el alumno por el alumno mismo, que una aventura vivida por él mismo. Si el alumno quiere vivir su aprendizaje, el maestro es necesariamente un actor, desde que sabe por anticipado lo que quiere enseñar."