Básico
El odómetro chafa
El odómetro (medidor de distancias recorridas) de un carro chafa siempre brinca de 3 a 5, saltándose el 4, sin importar la posición. Por ejemplo, después de viajar un kilómetro cambió de 000039 a 000050. Si el odómetro marca 002005, ¿cuántos kilómetros ha viajado en realidad el carro chafa?
Triángulos en una circunferencia
Sean $AB$ es el diámetro de una circunferencia con centro en el punto $D$, y $C$ un punto en $AB$ de tal manera que $AC$ es la mitad de $CB$. Por el punto $C$ se traza una perpendicular a $AB$ que corta a la circunferencia en los puntos $E$ y $F$. Si el área del triángulo $ABE$ es de $60 cm^2$ ¿cuánto vale el área del triángulo $DEF$?
Los 100 nueves!!!
Encuentra las ultimas 4 cifras del numero que se forma al sumar 9+99+999+9999+99999+999999+..........+ 999......999 (el ultimo numero esta formado por 100 nueves).
Divisores primos de polinomios
Sea $f(X)$ un polinomio de coeficientes enteros y $p$ un número primo. Decimos que $p$ es un divisor primo de $f(X)$ si existe $n \in \mathbb{Z}$ tal que $p | f(n)$.
Demuestre que todo polinomio no constante de coeficientes enteros tiene un número infinito de divisores primos.
ayuda con este problema
Felipe depositó $ 1.800.000 en un banco a una tasa de interés del 1,3% mensual. Al cabo de tres años, ¿cuál es la cantidad de dinero que tiene depositada Felipe?
Ejercicio clásico (con descubrimiento semiguiado)
Sea $D$ un punto en la base $BC$ de un triángulo, y consideremos los triángulos $ABD$ y $ACD$.
- Demostrar que la razón de sus áreas es igual a la razón de sus bases $BD$ y $CD$.
- Demostrar que si $D$ es el punto medio de $BC$ entonces sus áreas son iguales.
- Demostrar que si $D$ es el punto en que la bisectriz del ángulo $A$ corta a la base $BC$, entonces $AB/AC=BD/CD$ (teorema de la bisectriz).
Circuncentro y ortocentro: una propiedad métrica
Sean $H$ el ortocentro y $O$ el circuncentro del triángulo $ABC$. Si $M$ es el punto medio del lado $BC$, entonces $AH=2MO$. Demostrarlo.
Isogonales: iso (igual) gono (ángulo)
Demostrar que, en un triángulo $ABC$, la altura de cualquier vértice y la recta que pasa por él y el circuncentro forman el mismo ángulo con la bisectriz (de ese mismo vértice).
Tres vecinas
A: Al departamento de al lado se acaban de cambiar tres mujeres -según me lo dijo C.
Regla del 41 para ninis
En el país XYZ se aprobó una ley de "jubilación" de ninis (jóvenes que ni estudian ni trabajan). Básicamente, la regla para la "jubilación" es que el joven nini recibirá una pensión estatal de tres salarios mínimos de por vida si sigue siendo joven (menos de 30) y su edad más los años que se ha mantenido nini (sin estudiar ni trabajar) es al menos 41 años. Calcular la edad en que un adolescente de 19 años logrará la pensión si tiene 4 años de nini.