Básico

Problemas de nivel pre-estatal.
Problema

Rectángulo, lados, perímetro

Enviado por jmd el 15 de Noviembre de 2010 - 20:50.

 Los lados de un rectángulo tienen longitudes enteras, una de ellas es 8 unidades menos que otra, y la suma de tres de ellas es 55. Encontrar el perímetro. 

Problema

Suma algebraica

Enviado por jmd el 15 de Noviembre de 2010 - 20:48.

 La suma de 4020 números enteros consecutivos es 2010. Encontrarlos.

Problema

Abuelo, nietos y domingo

Enviado por jmd el 15 de Noviembre de 2010 - 20:45.

 El abuelo repartió 500 pesos entre sus 18 nietos de manera que cada niña recibió 2 pesos menos que cada niño. ¿Cuánto recibió cada quien en el reparto?

Problema

¿Cómo se demuestra perpendicularidad?

Enviado por jmd el 12 de Septiembre de 2010 - 10:38.

En los lados $CA$ y $AB$ del triángulo equilátero $ABC$, se eligen respectivamente los puntos $D$ y $E$, de tal manera que $2BE=EA$ y $2AD=DC$. Si P es el punto de intersección de $CE$ y $BD$, demostrar que $AP$ es perpendicular a $CE$.
 

Problema

Triángulo conocido

Enviado por jmd el 12 de Septiembre de 2010 - 09:02.

Dos lados de un triángulo forman un ángulo de 60 grados, y uno mide el doble que el otro. ¿Cuánto miden los otros dos ángulos? Justifica tu respuesta.

Problema

Cuadrado perfecto de cuatro cifras

Enviado por jmd el 25 de Agosto de 2010 - 16:33.

Sea $m$ un cuadrado perfecto de cuatro cifras menores que 9. Sumando una unidad a cada una de las cifras de $m$ se forma otro cuadrado perfecto. Encontrar $m$.

Problema

Coeficientes de una expresión cuártica

Enviado por jmd el 13 de Agosto de 2010 - 09:56.

Calcular el valor de la expresión $(a_0+a_2+a_4)^2-(a_1+a_3)^2$, donde los $a_i$ son los coeficientes de la expansión de  $(2x+\sqrt{3})^4$: $$(2x+\sqrt{3})^4=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4$$
 

Problema

No todos los triángulos son isósceles

Enviado por jmd el 10 de Agosto de 2010 - 17:25.

Demostrar que, en un triángulo ABC, la bisectriz del ángulo A y la mediatriz del lado BC concurren en el circuncírculo de ABC.

Problema

Chicas Fresa en Palacio

Enviado por jmd el 16 de Julio de 2010 - 07:57.

Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):

K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga". 

Problema

P1 OMM 1994. Sucesión con regla singular de formación

Enviado por jmd el 10 de Julio de 2010 - 12:29.

La colección infinita de números $1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, \ldots$ se ha
formado de la siguiente manera: Se coloca primero el primer impar $(1)$,
luego los siguientes dos pares $(2, 4)$, después los siguientes tres impares
$(5, 7, 9)$, luego los cuatro pares siguientes al último impar que se colocó
y así sucesivamente. Encuentra el término de la secuencia más cercano a
1994.

Distribuir contenido