XII Olimpiada Centroamericana y del Caribe

Problema

Círculos internamente tangentes

Enviado por jmd el 25 de Junio de 2010 - 12:35.

Sean Γ y Γ1 dos círculos tangentes internamente en A y con centros O y O1, respectivamente. Sea B el punto en Γ diametralmente opuesto al punto A, y C un punto en Γ tal que BC es tangente a Γ1 en P. Sea A el punto medio de BC. Suponiendo que O1A es paralela a AP, calcular la razón r/r1.

Problema

Raíces cúbicas de números racionales

Enviado por jmd el 25 de Junio de 2010 - 12:32.

Sean p,q,r números racionales no nulos tales que

3pq2+3qr2+3rp2
es un número racional no nulo. Demostrar que
13pq2+13qr2+13rp2 es también un número racional.

Problema

Embaldosado de un patio

Enviado por jmd el 25 de Junio de 2010 - 12:28.

Se desea embaldosar un patio cuadrado de lado N entero positivo. Se dispone de dos tipos de baldosas: cuadradas de 5×5, y rectangulares de 1×3. Determine los valores de N para los cuales es posible hacerlo. Nota: el patio debe quedar completamente cubierto sin que las baldosas se sobrepongan.

Problema

Mover una ficha en un tablero

Enviado por jmd el 25 de Junio de 2010 - 12:26.

Un jugador coloca una ficha en una casilla de un tablero m\timesn dividido en cuadrados de tamaño 1×1. El jugador mueve la ficha de acuerdo a las siguientes reglas:

  • En cada movida, el jugador mueve la ficha a un cuadrado que comparte un lado  con el cuadrado en que se encuentra.
  • El jugador no puede mover la ficha a un cuadrado que ha ocupado previamente.
  • Dos movimientos consecutivos no pueden tener la misma dirección.

El juego termina cuando el jugador no puede mover la ficha. Determine todos los valores de m y n tales que, al colocar la ficha en algún cuadrado, todos los cuadrados pueden ser ocupados durante el juego.

 

Problema

Tangente al circuncírculo

Enviado por jmd el 25 de Junio de 2010 - 12:18.

En el triángulo ABC, L,M,N son los puntos medios de los lados BC,CA,AB, respectivamente. La tangente por A  al circuncírculo de ABC, corta en P y Q a las rectas LM y LN, respectivamente. Demostrar que CP es paralela a BQ.

Problema

Suma de dígitos

Enviado por jmd el 25 de Junio de 2010 - 12:15.

Si S(n) denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de n(S(n)1)=2010 y demostrar que son las únicas.

Distribuir contenido