IV EGMO 2015

La edición 2015 de la Olimpiada Europea de Matemáticas para Muchachas, llamada EGMO por sus siglas en inglés "European Girl's Mathematical Olympiad".
Problema

Uno de si y solo si, con reflexión

Enviado por German Puga el 18 de Abril de 2015 - 20:38.

Sea $H$ el ortocentro y $G$ el gravicentro del triángulo acutángulo $\triangle ABC,$ con $ AB \neq AC.$ La linea $AG$ intersecta al circuncirculo de $\triangle ABC$ en $A$ y en $P$. Sea $P'$ la reflexión de $P$ en la línea $BC.$ Demuestra que $\angle CAB = 60°$ si y solo si $HG = GP'.$

Problema

Partición en m parejas

Enviado por German Puga el 18 de Abril de 2015 - 20:17.

Sean m y n enteros positivos con m > 1. Anastasia particiona el conjunto de enteros $1,2,\dots,2m$ en m parejas. Luego Boris escoje un entero de cada pareja y suma los enteros escogidos. Demuestra que Anastasia puede elegir las parejas de manera que Boris no pueda hacer que su suma sea igual a n.

Problema

Suma de cualesquiera dos consecutivos, cuadrado

Enviado por German Puga el 18 de Abril de 2015 - 20:05.

Determina si existe una sucesión infinita $a_1,a_2,\dots$ de enteros positivos que satisface la igualdad $$a_{n+2} = a_{n+1} + \sqrt{a_{n+1} + a_n}$$ para todo entero positivo n.

Problema

Máximo común divisor menor a n

Enviado por German Puga el 18 de Abril de 2015 - 19:48.

Sean m enteros mayores a 1, y sean $a_1,a_2,\dots,a_m$ enteros positivos menores o iguales a $n^m$. Demuestra que existen enteros positivos $b_1,b_2,\dots,b_m$ menores o iguales a n, tales que $$ mcd( a_1+b_1,a_2+b_2,\dots,a_m+b_m) < n,$$ donde $mcd(x_1,x_2,\dots,x_m)$ denota el máximo común divisor de $x_1,x_2,\dots,x_m$.

Problema

Fichas de dominó en un tablero de ajedrez

Enviado por German Puga el 18 de Abril de 2015 - 19:29.

Una ficha de dominó es de $2\times 1$ o de $1\times 2$ cuadrados unitarios. Determina de cuántas maneras distintas se pueden acomodar exactamente $n^2$ fichas de dominó en un tablero de ajedrez de tamaño $2n\times 2n$ de forma que cualquier cuadrado de $2\times 2$ contiene al menos dos cuadrados unitarios sin cubrir que están en la misma fila o en la misma columna.

Problema

El primero de la EGMO

Enviado por German Puga el 18 de Abril de 2015 - 19:18.

Sea $\triangle ABC$ un triángulo acutángulo, y sea $D$ el pie de la altura trazada desde $C$. La bisectriz de $\angle ABC$ intersecta a $CD$ en $E$ y vuelve a intersectar al circuncírculo $\omega$ de $\triangle ADE$ en $F$. Si $\angle ADF = 45°$, muestra que $CF$ es tangente a $\omega$.

Distribuir contenido