Se tiene el triángulo acutángulo $ABC$. El segmento $BC$ mide 40 unidades. Sea $H$ el ortocentro del triángulo $ABC$ y $O$ su circuncentro. Sean $D$ el pie de la altura desde $A$ y $E$ el pie de la altura desde $B$. Además el punto $D$ parte al segmento $BC$ de manera que $\frac{BD}{DC} = \frac{3}{5}$. Si la mediatriz del segmento $AC$ pasa por el punto $D$, calcula el área del cuadrilátero $DHEO$.
Nota: El ortocentro es el punto donde se intersectan las tres alturas de un triángulo. El circuncentro es el centro del círculo que pasa por los tres vértices del triángulo.