
Sea ABC un triángulo escaleno, D el pie de la altura desde A, E la intersección del lado AC con la bisectriz del lado ∠ABC, y F un punto sobre el lado AB. Sea O el circuncentro del triángulo ABC y sean X, Y y Z los puntos donde se cortan las rectas AD con BE, BE con CF, CF con AD, respectivamente. Si XYZ es un triángulo equilátero, demuestra que uno de los triángulos OXY, OYZ, OZX es un triángulo equilátero.