Sea $n$ un entero positivo, encuentra el entero más grande $m$, en términos de $n$ con la siguiente propiedad:
Una tabla con m renglones y n columnas puede ser llenada con números reales de tal manera que dos diferentes renglones, $[a_1, a_2, \dots , a_n]$ and $[b_1, b_2, \ldots, b_n]$ satisfacen que $$\max(|a_1 − b_1|, |a_2 − b_2|,\dots , |a_n − b_n|) = 1.$$
©Traducido de la versión en ingles por Matetam.com