Sean $p,q,r$ números primos positivos distintos. Muestra que si $pqr$ divide a $$(pq)^r+(qr)^p+(rp)^q-1$$ entonces $(pqr)^3$ divide a $$3((pq)^r+(qr)^p+(rp)^q-1)$$
Sean $p,q,r$ números primos positivos distintos. Muestra que si $pqr$ divide a $$(pq)^r+(qr)^p+(rp)^q-1$$ entonces $(pqr)^3$ divide a $$3((pq)^r+(qr)^p+(rp)^q-1)$$