XXIV OMM 2010

Problemas de la 24va Olimpiada Mexicana de Matemáticas 2010.
Problema

Divisibilidad entre el producto de tres primos (P6)

Enviado por jmd el 8 de Diciembre de 2010 - 14:09.

Sean $p,q,r$ números primos positivos distintos. Muestra que si $pqr$ divide a $$(pq)^r+(qr)^p+(rp)^q-1$$ entonces $(pqr)^3$ divide a $$3((pq)^r+(qr)^p+(rp)^q-1)$$

Problema

Circunferencia por ortocentro y dos vértices de un acutángulo (P5)

Enviado por jmd el 8 de Diciembre de 2010 - 14:08.

 

Sea $ABC$ un triángulo acutángulo con $AB\neq AC$, $M$ el punto medio de $BC$ y $H$ el ortocentro de $ABC$. La circunferencia que pasa por $B,H$ y $C$ corta a la mediana $AM$ en $N$. Muestra que $\angle{ANH}=90$.

 

 

 

Problema

Cuadrícula n por 4 (P4)

Enviado por jesus el 4 de Diciembre de 2010 - 16:32.

 Sea $n$ un entero positivo. En una cuadrícula $ n\times 4 $, cada renglón es igual a

2 0 1 0

Un cambio es tomar tres casillas

  1. consecutivas en el mismo renglón y
  2. con dígitos distintos escritos en ellas

y cambiar los tres dígitos de estas casillas de la siguiente manera

0 → 1,         1 → 2,        2→0

Problema

Dos circunferencias tangentes exteriormente (P3)

Enviado por jesus el 4 de Diciembre de 2010 - 16:08.

Sean $ C_1 $ y $ C_2 $ dos circunferencias tangentes exteriormente en un punto $ A $. Se traza una recta tangente a $ C_1 $ en $ B $ y secante a $ C_2 $ en $ C $ y $ D $; luego se prolonga el segmento $ AB $ hasta intersecar a $ C_2 $ en un punto $ E $. Sea $ F $ el punto medio del arco $ CD $ sobre $ C_2 $ que no contiene a $ E $ y sea $ H $ la intersección de $ BF $ con $ C_2 $. Muestra que $ CD,AF $ y $ EH $ son concurrentes.

Problema

Cambios de estado de focos en un tablero (P2)

Enviado por jesus el 28 de Noviembre de 2010 - 18:15.

En cada casilla de un tablero $ n\times n $hay un foco. Inicialmente todos los focos están apagados. En un paso, se permite cambiar el estado de todos los focos en una fila o de todos los focos en una columna (los focos prendidos se apagan y los focos apagados se prenden). Muestra que si después de cierta cantidad de pasos hay uno o más focos prendidos entonces en ese momento hay al menos n focos prendidos.

Problema

Ternas que cumplen una ecuación (P1)

Enviado por jesus el 27 de Noviembre de 2010 - 11:55.

Encuentra todas las ternas de números naturales $ (a,b,c) $ que cumplan la ecuación $ abc=a+b+c+1 $.

Distribuir contenido