XXVII OMM 2013

Problema

Te explico lo de convexidad... el resto no creo que le entiendas

Enviado por jmd el 29 de Noviembre de 2013 - 20:12.

Sea $A_1A_2\ldots A_8$ un octágono convexo, es decir, un octágono donde todos sus ángulos internos son menores de $180^{\circ}$. Además los lados del octágono tienen la misma longitud y cada par de lados opuestos son paralelos. Para cada $i=1,\ldots,8$, definamos el punto $B_i$ como la intersección del segmento $A_iA_{i+4}$ con el segmento $A_{i-1}A_{i+1}$, donde  $A_{j+8}=A_j$ y $B_{j+8}=B_j$ para todo número entero $j$. Muestra que para algún número $i$, de entre los números $1,2,3,4$ se cumple

$$\frac{|A_iA_{i+4}|}{|B_iB_{i+4}|}\leq\frac{3}{2}$$

Problema

Parejas especiales

Enviado por jmd el 29 de Noviembre de 2013 - 20:08.

Una pareja de enteros es especial si es de la forma $(n,n-1)$ o de la forma $(n-1,n)$ con $n$ un entero positivo. Muestra que una pareja $(n.m)$ de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros $n$ y $m$ satisfacen la desigualdad $n+m\geq(n-m)^2$.

Nota: la suma de dos parejas se define como $(a.b)+(c,d)=(a+c,b+d)$

Problema

Un cubo y muchos cubitos

Enviado por jmd el 29 de Noviembre de 2013 - 19:29.

Un cubo de $n \times n \times n$ está construido con cubitos de  $1\times 1 \times 1 $, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1 $, de $1 \times n \times1 $ y de  $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada de cubo de  $6 \times 6 \times 6 $ (formada por 6 subprismas de $1\times{6}\times{1}$

Problema

Elección con restricción negativa

Enviado por jmd el 25 de Noviembre de 2013 - 21:37.

¿Cuál es la mayor cantidad de elementos que puedes tomar del conjunto de números
enteros $\{1,2, . . . ,2012,2013\}$, de tal manera que entre ellos no haya tres distintos,
digamos $a, b, c$, tales que $a$ sea divisor o múltiplo de $b−c$?
 

Problema

Circunferencia con centro en diagonal de paralelogramo

Enviado por jmd el 25 de Noviembre de 2013 - 21:32.

Sea $ABCD$ un paralelogramo con ángulo obtuso en $A$. Sea $P$ un punto sobre el
segmento $BD$ de manera que la circunferencia con centro en $P$ y que pasa por $A$, corte a la recta $AD$ en $A$ y $Y$ , y corte a la recta $AB$ en $A$ y $X$. La recta $A$P intersecta a $BC$ en $Q$ y a $CD$ en $R$, respectivamente. Muestra que $\angle{XPY} = \angle{XQY} +\angle{XRY}$ .

Problema

¡¿Todas?!

Enviado por jmd el 25 de Noviembre de 2013 - 21:22.

Se escriben los números primos en orden, $p_1 = 2, p_2 = 3, p_3 = 5, \ldots$. Encuentra todas las parejas de números enteros positivos $a$ y $b$ con $a − b \geq 2$, tales que $p_a −p_b$ divide al número entero $2(a−b)$.

Distribuir contenido