VI OMM 1992
P6 OMM 1992. Muchas preguntas con un rectángulo
Sea $ABCD$ un rectángulo. Sean $I$ el punto medio de $CD$ y $M$ la intersección de $BI$ con la diagonal $AC$.
- 1. Pruebe que $DM$ pasa por el punto medio de $BC$.
-
2. Sea $E$ el punto exterior al rectángulo tal que $ABE$ sea un triángulo
isósceles y rectángulo en $E$. Además, supongamos que $BC = BE = a$.
Pruebe que $ME$ es bisectriz del ángulo $AMB$. - 3. Calcule el área del cuadrilátero $AEBM$ en función de $A$.
P5 OMM 1992. Desigualdad con suma de radicales
Sean $x, y, z$ números reales positivos tales que $x + y + z = 3$. Si
$$S = \sqrt{2x + 3} + \sqrt{2y + 3} + \sqrt{2z + 3},$$
pruebe que $6 < S \leq 3\sqrt{5}$
P4 OMM 1992. Suma de potencias múltiplo de 100
Muestre que $100$ divide a la suma de potencias $$1+11^{11}+111^{111}+\ldots+1111111111^{1111111111}$$
P3 OMM 1992. Siete puntos en hexágono
Considere siete puntos dentro o sobre un hexágono regular y pruebe que
tres de ellos forman un triángulo cuya área es menor o igual que $\frac{1}{6}$ del
área del hexágono.
P2 OMM 1992. Cuartetas y múltiplos de un primo
Sea $p$ un número primo, diga cuántas cuartetas distintas $(a, b, c, d)$ existen, con a, b, c y d enteros y $0 \leq a, b, c, d \leq p-1$, tales que $ad - bc$ sea múltiplo de $p$.
P1 OMM 1992. Tetraedro isósceles
Un tetraedro $OPQR$ es tal que los ángulos $POQ, POR$ y $QOR$ son rectos. Muestre que si $X, Y, Z$ son los puntos medios de $PQ, QR$ y $RP$, respectivamente, entonces el tetraedro $OXYZ$ es isósceles, es decir, tiene sus 4 caras iguales.