Para cada entero $n>0$ con expansión decimal $\overline{a_1a_2 \dots a_k}$ definimos $s(n)$ como sigue:
- Si k es par, $s(n) = \overline{a_1a_2} + \overline{a_3a_4} + \dots +\overline{a_{k-1}a_k} $
- Si k es impar, $s(n) = a_1 + \overline{a_2a_3} + \overline{a_4a_5} + \dots +\overline{a_{k-1}a_k} $
Por ejemplo, si $n=123$ entonces $s(n) = 1 + 23 = 24$ y si $n=2021$ entonces $s(n) = 20+21 = 41$.
Decimos que este $n$ es digital si $n$ es múltiplo de $s(n)$. Muestra que entre cualesquiera 198 enteros positivos consecutivos, todos ellos menores que 2000021, hay uno de ellos que es digital.