Publicaciones Recientes
P4 OMM 1995. Con 26 sí, con 27 no
a) Encuentra un subconjunto $B$ del conjunto $A = \{1, 2, 3, \ldots, 40\}$, de manera que $B$ tenga 26 elementos y que ningún producto de dos elementos de $B$ sea un cuadrado perfecto.
b) Demuestra que no se puede obtener un subconjunto de $A$ de 27 elementos con la característica mencionada en el inciso anterior.
P3 OMM 1995. Vértices consecutivos de heptágono regular
Sean $A,B,C,D$ vértices consecutivos de un heptágono regular, y $AL$ y $AM$ las tangentes desde $A$ a la circunferencia de centro $C$ y radio $CB$. Si $N$ es la intersección de $AC$ y $BD$, demuestra que los puntos $L, M$ y $N$ son colineales.
P2 OMM 1995. Seis puntos, 8 distancias 1 ¿equilátero?
Considera 6 puntos en el plano con la propiedad de que 8 de las distancias entre ellos son iguales a 1. Muestra que al menos tres de los puntos forman un triángulo equilátero de lado 1.
P1 OMM 1995. Déjame estrechar tu mano
En una Olimpiada de Matemáticas los concursantes están ocupando todos los asientos de un salón rectangular donde los asientos están alineados en filas y columnas de tal manera que hay más de dos filas y en cada fila hay más de dos asientos. Al inicio del examen un profesor les sugiere que se deseen suerte dándose la mano; cada uno de los concursantes estrecha la mano de los concursantes que están junto a él (adelante, atrás, a los lados y en diagonal) y sólo a éstos. Alguien observa que se dieron 1020 apretones de manos ¿Cuántos concursantes hay?
P6 OMM 1994. Un problema muy negativo
Sea $C$ una cuadrícula de $10x10$. Considere piezas de las siguientes formas:
donde en cada pieza, los cuadrados son de $1 x 1$. Demuestre que:
- 1. $C$ no se puede cubrir completamente con 25 piezas de la forma (a)
- 2. $C$ no se puede cubrir completamente con 25 piezas de la forma (b)
- 3. $C$ no se puede cubrir completamente con 25 piezas de la forma (c)
P5 OMM 1994. Cuatro vértices, 4 triángulos, 12 alturas
Sea $ABCD$ un cuadrilátero convexo (cada uno de sus ángulos es menor a 180 grados) y considere los pies de las alturas de los cuatro triángulos que se pueden formar con los vértices $A,B,C$ y $D$. Demuestre que no importa qué cuadrilátero convexo se tome, alguno de estos 12 puntos se encuentra sobre un lado del cuadrilátero.
P4 OMM 1994. Leer primero las páginas primas con 400
Un matemático caprichoso escribe un libro que tiene páginas de la 2 a la 400 y que debe ser leído de la siguiente manera: Primero deberán leerse todas las páginas cuyo número no sea primo relativo con 400 (por suerte, éstas se leen en orden normal, de menor a mayor). Una vez leídas éstas, se toma el último número de las que no se han leído (en este caso 399) y entonces se leen todas las páginas cuyo número no sea primo relativo con él y que no se hayan leído antes.
P3 OMM 1994. Bisectriz en un paralelogramo
Considere un paralelogramo $ABCD$ (con $AB$ paralela a $CD$ y $BC$ paralela a $DA$). Sobre la prolongación del lado $AB$ encuentre un punto $E$, de manera que $BE = BC$ (y con $B$ entre $A$ y $E$). Por $E$, trace una perpendicular a la línea $AB$, ésta se encontrará en un punto $F$ con la línea que pasa por $C$ y es perpendicular a la diagonal $BD$. Muestre que $AF$ divide en dos ángulos iguales al ángulo $DAB$.
P2 OMM 1994. Desorden en los números del reloj
Los doce números de un reloj se desprendieron y al colocarlos nuevamente,
se cometieron algunos errores. Demuestre que en la nueva colocación hay
un número que al sumarle los dos números que quedaron a sus lados se
obtiene un resultado mayor o igual a 21.
P1 OMM 1994. Sucesión con regla singular de formación
La colección infinita de números $1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, \ldots$ se ha
formado de la siguiente manera: Se coloca primero el primer impar $(1)$,
luego los siguientes dos pares $(2, 4)$, después los siguientes tres impares
$(5, 7, 9)$, luego los cuatro pares siguientes al último impar que se colocó
y así sucesivamente. Encuentra el término de la secuencia más cercano a
1994.