Publicaciones Recientes
Geometría básica para principiantes
Este libro aun continua en desarrollo, está pensado para estudiantes que se inician en el estudio de la geometría de olimpiadas, los primeros capítulos incluso pueden ayudar a los estudiantes que sólo desean mejorar o complementar sus conocimientos de geometría escolarizada (secundaria o bachillerato).
Solución de congruencias potenciales
Sea $a$ un entero positivo, coprimo con un primo $p$. Analizar la ecuación de congruencias $x^n \equiv a \pmod{p}$ en cuanto a sus posibles soluciones.
Sobre la noción de congruencia de triángulos
A lo largo de este capitulo veremos la definición de congruencia y algunos usos prácticos en la argumentación para la solución de problemas.
La congruencia no la definiremos formalmente si no hasta la sección "Congruencia de triángulos como noción intuitiva y su formalización".
Raíces primitivas de un primo: una propiedad logarítmica
Sean $p$ un número primo y $g$ una de sus raíces primitivas. Demostrar que dos enteros positivos $i,j$ son equiresiduales en la división entre $p-1$ si y sólo si $g^i,g^j$ son equiresiduales en la división entre $p$
Un punto en el interior de un triángulo
Sean P un punto en el interior del triángulo ABC y un ángulo $\alpha$ dado. Los ángulos en la base AB del triángulo ABP miden $x$ y $90-2\alpha$, los ángulos en la base BC del triángulo BCP miden $90-2\alpha$ y $2\alpha-60$, y los de la base CA del triángulo CAP miden $60+\alpha$ y T. Encontrar el valor de $x$ en términos de $\alpha$. (¿Qué condiciones debe cumplir el valor $\alpha$.)
Isósceles y equilátero --elemental pero no trivial
Sean ABC un triángulo, con AB=AC y ángulo en A de 100 grados, y un punto B' en el mismo plano de tal manera que AB'C es equilátero. Encontrar el ángulo ABB'.
Álgebra con geometría
En la figura se muestra un paralelogramo.
a) Si $EY=5x-10, AS=3x+4, EA=4x-8, AO=x+9, EO=2x+4$, encontrar las longitudes de $EY, AS, EA, YS, AY, ES.$
b) Si el ángulo en $E$ mide $5x+9$, y el ángulo en $Y$ mide $10x+51$, encontrar las medidas de cada ángulo del paralelogramo.
(Problema analizado en el XI Congreso Internacional de Educación Matemática, México 2008.)
Par o impar --esa es la pregunta
Si $m$ y $ n $ son números impares ¿qué se puede decir de $(m-1)(n^2-1)/8$? Justifica tu respuesta.
Viaje de estudios
Un grupo de estudiantes hacen una colecta para un viaje de estudios. Si cada uno aportara 62 pesos faltarían 200. Si cada uno aportara 82 pesos sobrarían 1000. ¿Cuántos estudiantes forman el grupo?
Naranjas ombligonas
Compré naranjas ombligonas y pagué 180 pesos. Si me hubieran costado 10% menos cada una, habría comprado 10 naranjas más con los 180. ¿Cuántas naranjas compré y a qué precio? (Variante: si me hubieran costado 20 centavos menos cada una, habría comprado 10 naranjas más con los 180 pesos)