Publicaciones Recientes

Problema

P5. OMM 1987. Triángulo rectángulo y tres área iguales imposibles

Enviado por jesus el 3 de Julio de 2010 - 19:48.

Considere un triángulo rectángulo ABC donde la hipotenusa es BC. M un punto en BC; P y Q las proyecciones de M en AB y BC, respectivamente. Pruebe que, para ninguno de tales puntos M, son iguales las áreas de  BPM, MQC y AQMP (las tres al mismo tiempo).

Problema

P4. OMM 1987. Producto de enteros menores que 100 y con tres divisores

Enviado por jesus el 3 de Julio de 2010 - 15:43.

Calcule el producto de todos los enteros positivos menores que 100, y que tengan exactamente tres divisores positivos. Compruebe que dicho número es un cuadrado perfecto.

Problema

P3. OMM 1987. Lugar geométrico de la proyección de un punto

Enviado por jesus el 3 de Julio de 2010 - 14:49.

Considere dos rectas $\ell$ y $\ell'$ y un punto fijo P que diste lo mismo de $\ell$, que de $\ell'$. ¿Qué lugar geométrico describen los puntos M que son proyección de P sobre AB, donde A está en $\ell$, B está en $\ell'$, y el ángulo APB es recto.

Problema

P2. OMM 1987. Divisores de 20 factorial

Enviado por jesus el 3 de Julio de 2010 - 14:43.

¿Cuántos enteros positivos dividen a 20! ? (20! = 1×2×3×· · ·×19×20).

Entrada de blog

Sentido de la estructura algebraica

Enviado por jmd el 2 de Julio de 2010 - 11:11.

En el paper Developing Katy's Algebraic Structure Sense, Hoch y Dreyfus, los autores de este reporte de investigación, someten a prueba empírica un método de enseñanza individualizada de las matemáticas que podríamos llamar "entrevistas didácticas" (teaching interviews).

Los autores usan las entrevistas didácticas para mejorar el desempeño en matemáticas de adolescentes que, si bien son buenos en la manipulación algebraica, no han adquirido el  "sentido de la estructura". Eligieron para ilustrar los resultados a Katy, una adolescente de 16 años.

Problema

Circunferencias inscritas en ángulo e isósceles

Enviado por jmd el 1 de Julio de 2010 - 20:32.

Dos circunferencias están inscritas entre los lados de un triángulo isósceles $ABC$ (con $AB=AC$) y los de un ángulo, uno de los cuales pasa por A y el otro incluye la base $BC$ del isósceles. Encontrar la relación entre la altura de $A$ respecto a la base $BC$ y los radios de las circunferencias.

Problema

Círculos internamente tangentes

Enviado por jmd el 25 de Junio de 2010 - 11:35.

Sean $\Gamma$ y $\Gamma_1$ dos círculos tangentes internamente en $A$ y con centros $O$ y $O_1$, respectivamente. Sea $B$ el punto en $\Gamma$ diametralmente opuesto al punto $A$, y $C$ un punto en $\Gamma$ tal que $BC$ es tangente a $\Gamma_1$ en $P$. Sea $A'$ el punto medio de $BC$. Suponiendo que $O_1A'$ es paralela a $AP$, calcular la razón $r/r_1$.

Problema

Raíces cúbicas de números racionales

Enviado por jmd el 25 de Junio de 2010 - 11:32.

Sean $p,q,r$ números racionales no nulos tales que

$$\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$$
es un número racional no nulo. Demostrar que
$$\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$$ es también un número racional.

Problema

Embaldosado de un patio

Enviado por jmd el 25 de Junio de 2010 - 11:28.

Se desea embaldosar un patio cuadrado de lado $N$ entero positivo. Se dispone de dos tipos de baldosas: cuadradas de $5\times5$, y rectangulares de $1\times3$. Determine los valores de $N$ para los cuales es posible hacerlo. Nota: el patio debe quedar completamente cubierto sin que las baldosas se sobrepongan.

Problema

Mover una ficha en un tablero

Enviado por jmd el 25 de Junio de 2010 - 11:26.

Un jugador coloca una ficha en una casilla de un tablero $m\timesn$ dividido en cuadrados de tamaño $1\times1$. El jugador mueve la ficha de acuerdo a las siguientes reglas:

  • En cada movida, el jugador mueve la ficha a un cuadrado que comparte un lado  con el cuadrado en que se encuentra.
  • El jugador no puede mover la ficha a un cuadrado que ha ocupado previamente.
  • Dos movimientos consecutivos no pueden tener la misma dirección.

El juego termina cuando el jugador no puede mover la ficha. Determine todos los valores de $m$ y $ n $ tales que, al colocar la ficha en algún cuadrado, todos los cuadrados pueden ser ocupados durante el juego.

 

Distribuir contenido