Publicaciones Recientes

Problema

La clave está en la figura

Enviado por jmd el 16 de Mayo de 2011 - 06:27.

En el triángulo $ABC$, rectángulo en $C$, la bisectriz de $A$ corta a $BC$ en $P$ y la bisectriz de $B$ corta a $CA$ en $Q$. Sean $M$ y $N$ las proyecciones de $P$ y $Q$, respectivamente, sobre el lado $AB$ . Calcular la medida del ángulo $MCN$.

Entrada de blog

El cuadrado de Polya --con Geogebra

Enviado por jmd el 8 de Mayo de 2011 - 21:24.

En este post comento sobre un posible proceso de solución al problema clásico de inscribir un cuadrado en un triángulo, usando el software de geometría dinamico Geogebra.

El cuadrado de Polya

En el problem solving de las matemáticas escolares hay algunos problemas que son ya legendarios. Uno de ellos es el problema del cuadrado de Polya. Se trata de inscribir un cuadrado en un triángulo. A continuación su enunciado:

Inscribir un cuadrado en un triángulo $ABC$. Dos de los vértices del cuadrado deben estar en la base $BC$, y los otros dos en los otros dos lados, uno en cada uno.

Discusión

Banda de Moebius

Enviado por crimeeee el 7 de Mayo de 2011 - 14:27.

Tengo una duda sobre espacios infinitos: en este problema:

-En un camino infinito en ambas direcciones, el correcaminos sale a velocidad constante. Al rato sale el coyote a perseguirlo, a velocidad constante. La velocidad del correcaminos es igual al 90% de la velocidad del coyote. El coyote no sabe a qué hora salió el correcaminos y tampoco sabe en qué dirección salió. Demostrar que de todos modos el coyote puede alcanzar al correcaminos.

Como verán es bastante complicado, sobre todo porque en espacios infinitos no se cumplen las mismas reglas que en la realidad, aparte qué pasa si el correcaminos salió en infinito tiempo antes que el coyote y en dirección contraria?

Problema

Una propiedad banal de dos isogonales

Enviado por jmd el 6 de Mayo de 2011 - 14:51.

 Sea $ABC$ un triángulo y $\Gamma$ su circuncírculo con centro $O$. La altura de $A$ y el radio $OA$ forman un ángulo cuya medida es la diferencia de las de $B$ y $C$

Problema

Circuncentro y ortocentro: una propiedad métrica

Enviado por jmd el 6 de Mayo de 2011 - 13:50.

Sean $H$ el ortocentro y $O$ el circuncentro del triángulo $ABC$. Si $M$ es el punto medio del lado $BC$, entonces $AH=2MO$. Demostrarlo.

Discusión

Demostrar [paridad]

Enviado por crimeeee el 3 de Mayo de 2011 - 20:32.

 Este problema no sé cómo resolverlo. Espero que alguien me ayude:

" Se sueldan 2001 varillas (rectas) formando un camino. Demostrar que no existe ninguna línea recta $-$no pasando por un punto de soldadura del camino$-$ que intersecte a todos los 2001 segmentos del camino. "

Gracias.

Entrada de blog

Construcción de un triángulo... ¡con gestión del entusiasmo!

Enviado por jmd el 3 de Mayo de 2011 - 09:19.

En este post voy a discutir la solución de un problema de construcción geométrica con regla y compás utilizando un enfoque al he llamado de entusiasmo --un poco para estar a la moda mass mediática de los libros de autoayuda y gestión del entusiasmo.

Para ilustrar el hecho de que el entusiasmo puede quedarse en el mero sueño si no es acompañado de una lógica sana, comparo mi método con los sueños de un desposeido en la canción americana "If I only had a match"

Problema

Construcción de un triángulo

Enviado por jmd el 1 de Mayo de 2011 - 21:21.

Construir el triángulo $ABC$ dadas las longitudes $m_a$ de su mediana desde $A$, $d_a$ de la bisectriz del ángulo $A$, y $h_a$ de la altura del vértice $A$ (respecto a su lado opuesto $BC$).

Problema

Isogonales: iso (igual) gono (ángulo)

Enviado por jmd el 30 de Abril de 2011 - 06:51.

 Demostrar que, en un triángulo $ABC$, la altura de cualquier vértice y la recta que pasa por él y el circuncentro forman el mismo ángulo con la bisectriz (de ese mismo vértice).

Problema

Reflejos en el espejo de la bisectiz

Enviado por jmd el 29 de Abril de 2011 - 23:07.

 Dentro del triángulo $ABC$, considere un punto $P$, y $C'$ y $B'$, los pies de las perpendiculares bajadas desde $P$ a los lados $AB$ y AC, respectivamente. Demostrar que si $Q$ es un punto tal que $C'PB'Q$ es paralelogramo, entonces las rectas $AP$ y $AQ$ son simétricas respecto a la bisectriz del ángulo $A$.

Distribuir contenido