Publicaciones Recientes

Discusión

Demostrar [paridad]

Enviado por crimeeee el 3 de Mayo de 2011 - 19:32.

 Este problema no sé cómo resolverlo. Espero que alguien me ayude:

" Se sueldan 2001 varillas (rectas) formando un camino. Demostrar que no existe ninguna línea recta $-$no pasando por un punto de soldadura del camino$-$ que intersecte a todos los 2001 segmentos del camino. "

Gracias.

Entrada de blog

Construcción de un triángulo... ¡con gestión del entusiasmo!

Enviado por jmd el 3 de Mayo de 2011 - 08:19.

En este post voy a discutir la solución de un problema de construcción geométrica con regla y compás utilizando un enfoque al he llamado de entusiasmo --un poco para estar a la moda mass mediática de los libros de autoayuda y gestión del entusiasmo.

Para ilustrar el hecho de que el entusiasmo puede quedarse en el mero sueño si no es acompañado de una lógica sana, comparo mi método con los sueños de un desposeido en la canción americana "If I only had a match"

Problema

Construcción de un triángulo

Enviado por jmd el 1 de Mayo de 2011 - 20:21.

Construir el triángulo $ABC$ dadas las longitudes $m_a$ de su mediana desde $A$, $d_a$ de la bisectriz del ángulo $A$, y $h_a$ de la altura del vértice $A$ (respecto a su lado opuesto $BC$).

Problema

Isogonales: iso (igual) gono (ángulo)

Enviado por jmd el 30 de Abril de 2011 - 05:51.

 Demostrar que, en un triángulo $ABC$, la altura de cualquier vértice y la recta que pasa por él y el circuncentro forman el mismo ángulo con la bisectriz (de ese mismo vértice).

Problema

Reflejos en el espejo de la bisectiz

Enviado por jmd el 29 de Abril de 2011 - 22:07.

 Dentro del triángulo $ABC$, considere un punto $P$, y $C'$ y $B'$, los pies de las perpendiculares bajadas desde $P$ a los lados $AB$ y AC, respectivamente. Demostrar que si $Q$ es un punto tal que $C'PB'Q$ es paralelogramo, entonces las rectas $AP$ y $AQ$ son simétricas respecto a la bisectriz del ángulo $A$.

Entrada de blog

Dualidad en geometría

Enviado por jmd el 25 de Abril de 2011 - 19:43.

En este post voy a argumentar que el punto medio de un segmento y la bisectriz de un ángulo son conceptos geométricos que se pueden ver como duales. Una instancia de uso de esa forma de ver esos conceptos duales se presenta en la forma de dos construcciones geométricas no triviales.

Book page

Circunferencia de Apolonio de razón 1:2

Enviado por jmd el 18 de Abril de 2011 - 16:40.

 
Problema

Tres vecinas

Enviado por jmd el 18 de Abril de 2011 - 15:41.

A: Al departamento de al lado se acaban de cambiar tres mujeres -según me lo dijo C.

B: Ya sé. Y también dice algo más interesante: en promedio su edad es 24.
 
C: Cierto. Y les tengo un problema para MaTeTaM. ¿Cuál es la posible edad de la mayor, si la edad mediana es 4?
Problema

Regla del 41 para ninis

Enviado por jmd el 17 de Abril de 2011 - 10:26.

En el país XYZ se aprobó una ley de "jubilación" de ninis (jóvenes que ni estudian ni trabajan). Básicamente, la regla para la "jubilación" es que el joven nini recibirá una pensión estatal de tres salarios mínimos de por vida si sigue siendo joven (menos de 30) y su edad más los años que se ha mantenido nini (sin estudiar ni trabajar) es al menos 41 años. Calcular la edad en que un adolescente de 19 años logrará la pensión si tiene 4 años de nini.

Problema

Volumen de una alberca

Enviado por jmd el 17 de Abril de 2011 - 09:19.

Una alberca, cuyo espejo del agua es un rectángulo $a\times{b}$, tiene el fondo inclinado también rectangular de manera que la profundidad en un extremo ($h$) es un metro menor que la del otro. Obtener una fórmula para calcular la capacidad de la alberca en metros cúbicos y usarla para $h=1,a=3,b=6$. Nota: puedes suponer que $a,b,h$ están expresadas en metros y las paredes son verticales.

 

Distribuir contenido