Publicaciones Recientes
Suma de cualesquiera dos consecutivos, cuadrado
Determina si existe una sucesión infinita $a_1,a_2,\dots$ de enteros positivos que satisface la igualdad $$a_{n+2} = a_{n+1} + \sqrt{a_{n+1} + a_n}$$ para todo entero positivo n.
Máximo común divisor menor a n
Sean n y m enteros mayores a 1, y sean $a_1,a_2,\dots,a_m$ enteros positivos menores o iguales a $n^m$. Demuestra que existen enteros positivos $b_1,b_2,\dots,b_m$ menores o iguales a n, tales que $$ mcd( a_1+b_1,a_2+b_2,\dots,a_m+b_m) < n,$$ donde $mcd(x_1,x_2,\dots,x_m)$ denota el máximo común divisor de $x_1,x_2,\dots,x_m$.
Fichas de dominó en un tablero de ajedrez
Una ficha de dominó es de $2\times 1$ o de $1\times 2$ cuadrados unitarios. Determina de cuántas maneras distintas se pueden acomodar exactamente $n^2$ fichas de dominó en un tablero de ajedrez de tamaño $2n\times 2n$ de forma que cualquier cuadrado de $2\times 2$ contiene al menos dos cuadrados unitarios sin cubrir que están en la misma fila o en la misma columna.
El primero de la EGMO
Sea $\triangle ABC$ un triángulo acutángulo, y sea $D$ el pie de la altura trazada desde $C$. La bisectriz de $\angle ABC$ intersecta a $CD$ en $E$ y vuelve a intersectar al circuncírculo $\omega$ de $\triangle ADE$ en $F$. Si $\angle ADF = 45°$, muestra que $CF$ es tangente a $\omega$.
Trapecio Isósceles circunscrito a una circunferencia
Un trapecio Isósceles ABCD esta circunscrito a una circunferencia, sus bases miden 4mts y 9mts. Hallar el área del trapecio.
Identidad notabilísima --y su determinante
Me he encontrado en estos días con la notabilísima identidad algebraica (para a,b,c reales):
$$abc+(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)$$
Su rasgo distintivo radica --creo-- en que el lado derecho refleja el izquierdo pero intercambiando la suma por el producto y éste por aquélla. Es decir, lo que en el lado izquierdo es producto en el derecho es suma y la suma en el izquierdo es producto en el derecho.
Seguir la regla y "ver como" en álgebra
Ahora que el 2014 se ha quedado atrás y el puente Guadalupe Reyes se terminó es buen momento para mirar hacia el futuro. Y desearle a toda la comunidad de usuarios de MaTeTaM un 2015 de eficaces aprendizajes en el problem solving de matemáticas.
Y, bueno, de paso voy a plantear la tesis de que, en el aprendizaje de las matemáticas, primero se aprende el procedimiento y sólo después de ello se aprende el concepto. Ilustro con un ejemplo de desigualdades.
Calendario Dodecaédrico con Origami 2015
Para hacer el calendario sólo tienen que descargar, imprimir, doblar y armar. Aquí está el video con las intrucciones de armado que hicimos para la versión 2010.
Algunos de ustedes nos han comentado que les sobran muchas pestañas a la hora de armarlo. Les queremos decir que sí es posible armarlo sin pegamento y sin que sobren pestañas.
Riesgo moral y agencia --en educación superior
En este fin de 2014 en que la Academia de Ciencias sueca otorgó el premio Nobel de economía a Jean Tirole, puede que sea de alguna utilidad comentar sobre su enfoque (la Teoría de la Agencia) al analizar los mercados y su regulación. (Añado una discusión sobre la situación de la educación superior vista desde la perspectiva de esta importante teoría.)
Entrenamiento rumbo a la OMM 2015
Este es un entrenamiento de prueba.
La intención es usar la plataforma para organizarnos y mantener comunicación. Se me ocurre que podemos poner tareas, compartir soluciones y sobre todo resolver dudas.
Con el tiempo esperamos entender mejor cómo usar esta plataforma. Tanto participantes como entrenadores.