Publicaciones Recientes
Identidad de Gauss
a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$
c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad $a^2+b^2+c^2-ab-bc-ca\geq 0$
Polinomios simétricos en tres variables: resultado fundamental
Sea $ n $ un entero no negativo y $x,y,z$ números reales. Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$ y $S_n=x^n+y^n+z^n$.
Demostrar:
a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$
Polinomios simétricos en dos variables: resultado fundamental
Sea $ n $ un entero no negativo y $a,b$ números reales.
a)Demostrar la identidad $$a^n+b^n=(a+b)(a^{n-1}+b^{n-1})-ab(a^{n-2}+b^{n-2})$$
Instrucciones de armado del Calendario MaTeTaM 2010
Aquí les dejamos un video con las instrucciones de armado del calendario dodecaédrico 2010. MaTeTaM les desea Feliz Año Nuevo. Esperamos que pasen un buen rato armando su dodecaedro con papiroflexia (origami).
El calendario quedará así
Ejercicios sobre inducción matemática
El n-ésimo número triangular $T_{n}$ se define como la suma de los primeros $ n $ enteros.
¿Quién tiene más?
Dos vecinos juegan al "quién tiene más" (en varilla para la construcción):
A: Yo tengo 40 y tú 30.
B: Sí, pero las mías miden 4 metros más que las tuyas.
Modelación recursiva
¿De cuántas formas se puede formar un número con los dígitos 1 y 2 (y ningún otro) de tal manera que sus dígitos sumen n?
Calendario MaTeTaM 2010... y ¡Feliz Navidad!
Feliz navidad y buenas posadas estimados usuarios de MaTeTaM.
Como ya todo mundo se fue de vacaciones... Bueno, Jesús ya se fue de vacaciones, y me encargó que elaborara un manual de armado de un calendario que idearon él y Valentina como un regalo de MaTeTaM a sus usuarios.