Publicaciones Recientes

Problema

Tangente al circuncírculo

Enviado por jmd el 25 de Junio de 2010 - 11:18.

En el triángulo $ABC$, $L,M,N$ son los puntos medios de los lados $BC,CA,AB$, respectivamente. La tangente por $A$  al circuncírculo de $ABC$, corta en $P$ y $Q$ a las rectas $LM$ y $LN$, respectivamente. Demostrar que $CP$ es paralela a $BQ$.

Problema

Suma de dígitos

Enviado por jmd el 25 de Junio de 2010 - 11:15.

Si $S(n)$ denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de $n(S(n)-1)=2010$ y demostrar que son las únicas.

Problema

Posible cambio de variables en desigualdades (2)

Enviado por jmd el 25 de Junio de 2010 - 06:42.

Sean $x,y,z$ números reales positivos. Demostrar que si $xy+yz+zx+2xyz=1$, entonces existen números $a,b,c$ reales positivos tales que
$$x=\frac{a}{b+c},y=\frac{b}{c+a},z=\frac{c}{a+b}$$

Problema

Posible cambio de variables en desigualdades

Enviado por jmd el 25 de Junio de 2010 - 06:41.

Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$. Demostrar que si $\sigma_3=\sigma_1+2$, entonces existen números $a,b,c$ reales positivos tales que $$x=\frac{b+c}{a},y=\frac{c+a}{b},z=\frac{a+b}{c}$$
 

Problema

Un ejercicio algebraico con polinomios simétricos

Enviado por jmd el 25 de Junio de 2010 - 06:38.

Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$, los polinomios simétricos elementales para tres variables. Demostrar que $1/(1+x)+1/(1+y)+1/(1+z)=1$ si y sólo si $\sigma_3=\sigma_1+2$. (En otras palabras, las ecuaciones $1/(1+x)+1/(1+y)+1/(1+z)=1$ y $xyz=x+y+z+2$ pueden ser transformadas una en la otra mediante operaciones algebraicas.)

Noticia

Programa de entrenamientos, OMM Tamaulipas 2010

Enviado por jmd el 24 de Junio de 2010 - 07:45.

Ramón J Llanos, delegado Tamaulipas de la Olimpiada Mexicana de Matemáticas, me envió el siguiente programa de entrenamientos para que le diera difusión en MaTeTaM:

Noticia

Entrena con Nueva Zelanda

Enviado por jmd el 23 de Junio de 2010 - 07:37.

El sitio web de la Olimpiada de matemáticas de Nueva Zelanda ofrece problemas mensuales orientados a la preparación olímpica de sus estudiantes. Traduzco el paper de mayo de problemas propuestos (lo pueden consultar en inglés en http://www.nzamt.org.nz/nzimo/wp-content/uploads/2010/05/2010problems-ma...)

Problema

Un producto de Cauchy

Enviado por jmd el 22 de Junio de 2010 - 16:07.

Sea dada una sucesión finita $a_0,a_1,a_2,\ldots,a_n$ de números reales positivos. Demostrar que la sucesión es geométrica si y sólo si se cumple la ecuación
$$(a_0^2+a_1^2+\ldots+a_{n-1}^2)(a_1^2+a_2^2+\ldots+a_n^2)=(a_0a_1+a_1a_2+\ldots+a_{n-1}a_n)^2$$

Problema

Trapecio isósceles

Enviado por jmd el 21 de Junio de 2010 - 07:24.

Sea dado un trapecio isósceles ABCD. Demostrar:

Si la altura y la línea media (unión de los puntos medios de sus lados) son congruentes entonces sus diagonales son perpendiculares.

Decir también si la recíproca se cumple (con prueba o contraejemplo).

Entrada de blog

Si tienes la teoría, la práctica es más eficaz

Enviado por jmd el 19 de Junio de 2010 - 13:54.

El problema 1 del concurso estatal

Demostrar que el número 100...001, el cual tiene doscientos ceros intermedios, es múltiplo de 1001

pone en juego uno de los conocimientos más elementales de las matemáticas escolares: el significado de "múltiplo" y el algoritmo de la división. No se necesita más para resolverlo.

El método directo es emprender la división entre 1001. Pero son muchas cifras... tantas que no caben todas en la hoja de papel. ¿Entonces? Bueno, lo que está obligado a hacer el cognizador es a idear una estrategia alternativa.

Distribuir contenido