Publicaciones Recientes

Problema

¿Cómo se calcula la longitud de una ceviana?

Enviado por jmd el 8 de Diciembre de 2011 - 20:54.

Sea $ABC$ un triángulo cuyos lados son $a, b, c$. Se divide cada lado del triángulo en "n" segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto distintos de los vértices. Demuestre que $$\frac{S}{a^2+b^2+c^2}$$ es un número racional.

 

Problema

¿Cómo se definía elipse?

Enviado por jmd el 8 de Diciembre de 2011 - 20:53.

Demuestre que entre todos los triángulos cuyos vértices distan 3, 5 y 7, de un punto
dado P, el que tiene mayor perímetro admite a $P$ como su incentro.

 

Problema

Seis naturales no nulos

Enviado por jmd el 8 de Diciembre de 2011 - 20:50.

Sean $a,b,c,d,p$ y $q$ números naturales no nulos que verifican $ad - bc = 1$, y $$\frac{a}{b}\gt \frac{p}{q}\gt \frac{c}{d}$$
Demostrar que

  • $q\geq b+d$
  • Si $q=b+d$ entonces $p=a+c$

 

Problema

Lados y alturas en progresión aritmética, equilátero

Enviado por jmd el 8 de Diciembre de 2011 - 20:48.

Las medidas de los lados de un triángulo están en progresión aritmética, y las longitudes de las alturas del mismo triángulo también están en progresión aritmética. Demuestre que el triángulo es equilátero.

Problema

Puntos en lados opuestos de un cuadrilátero

Enviado por jmd el 7 de Diciembre de 2011 - 19:59.

 Sean $ABCD$ un cuadrilátero plano convexo, y $P$ y $Q$ puntos de $AD$ y $BC$, respectivamente, tales que
$$\frac{AP}{PD}=\frac{AB}{DC}=\frac{BQ}{QC}$$
Demuestre que los ángulos que forma la recta $PQ$ con las rectas $AB$ y $DC$ son iguales.

Problema

Raíces de una ecuación cúbica

Enviado por jmd el 7 de Diciembre de 2011 - 19:39.

 Si $r, s$ y $t$ son las raíces de la ecuación $$x(x-2)(3x-7)=2$$
a) Demuestre que $r,s$ y $t$ son positivos.
b) Calcule $\arctan{r}+\arctan{s}+\arctan{t}$

Problema

El truco es conjugar

Enviado por jmd el 7 de Diciembre de 2011 - 19:31.

 Pruebe que si $m, n, r$ son enteros positivos, no nulos, y $$1+m+n\sqrt{3}=(2+\sqrt{3})^{2r-1}$$, entonces $m$ es un cuadrado perfecto.

Problema

Una condición de isósceles

Enviado por jmd el 7 de Diciembre de 2011 - 19:08.

 En un triángulo $ABC$, $M$ y $N$ son los puntos medios respectivos de los lados $AC$ y $AB$, y $P$ el punto medio de intersección de $BM$ y $CN$. Demuestre que, si es posible inscribir una circunferencia en el cuadrilátero $ANPM$, entonces el triángulo $ABC$ es isósceles.

Problema

Funciones que cumplen ecuación

Enviado por jmd el 7 de Diciembre de 2011 - 19:05.

 Encontrar las funciones $f(x)$ tales que cumplen la ecuación $$[f(x)]^2[f(1-x)/(1+x)]=64x$$ para $x\neq0,x\neq1,x\neq-1$

 

Problema

Cevianas por el circuncentro

Enviado por jmd el 7 de Diciembre de 2011 - 12:12.

 Dado un triángulo $ABC$, considere los puntos $D, E, F$ en las rectas $BC, AC, AB$, respectivamente. Si las rectas $AD, BE, CF$ pasan todas por el centro $O$ del circuncírculo de $ABC$, cuyo radio es $r$, demostrar que
$$\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CE}=\frac{2}{r}$$

Distribuir contenido