Publicaciones Recientes
Problema de la X ONMAS
Utilizando los números 1,2,3,4,5,6,7,8,9 se quieren armar conjuntos que tengan dos o mas de esos números, sin repetición, de modo que si se multiplican todos los números del conjunto, el resultado que se obtiene es múltiplo de 4 pero no es múltiplo de 8.
¿Cuántos de estos conjuntos se pueden armar ?
Teorema de la altura: una prueba visual
En nuestra sociedad globalizada, en la que el espectáculo y la diversión han sido puestos en el centro por los mass media, es muy difícil ser profesor, de cualquier cosa, pero sobre todo de matemáticas. ¿Tiene que ser convertida el aula en un reality show para atraer la atención de nuestros estudiantes?
Resultados del selectivo final... y selección OMM_Tam_2011
Para los resultados del examen selectivo final atacho el archivo. La selección es la siguiente:
Bernardo Antonio Tovías Guerrero 64
Luis Germán Díaz Zúñiga 51
Claudia Lorena Cabrera Arjona 46
José Enrique Olvera Vázquez 44
Alma Rosa Meléndez Martínez 32
Alejandra Echavarría Gallegos 31
Felicidades y ¡vamonos recio por dos platas y dos bronces!
Los saluda
jmd
Nietzsche, el nihilismo --y la reducción al absurdo
El último jueves del mes pasado ofrecí una charla sobre Nietzsche en la UAMCEH_UAT dentro del seminario de filosofía denominado Café y Rollos. Atacho el texto en que basé la presentación. Está en forma de cuadernillo, es decir, hay que imprimir a doble cara y después doblar a la mitad.
La parte de la charla que podría ser de interés para los lectores de MaTeTaM es la que presento en este post. Presenta el método de prueba de la reducción al absurdo con un trasfondo nihilista. Me sirvió para mostrar el lado no negativo de Nietzsche y el Nihilismo.
Problemas y resultados del V selectivo (OMM_Tam_2011)
Enseguida se presentan los problemas del quinto examen selectivo y los puntajes que los preseleccionados obtuvieron en él.
1.- Sean $A,B,C,D,E,F,G,H,I$ 9 puntos distintos en una circunferencia de radio $r$, de tal manera que $ABCD$ es un cuadrado y $EFGHI$ es un pentágono regular. Demuestra que hay un arco cuya longitud es no mayor que $\frac{\pi r}{20}$.
2. Sean $a,b,c$ 3 números enteros positivos con $(a,b)=k$ y $\frac{5a^2}{a+b}=kc$. Encuentra los posibles valores de $c$.
Sobre el concepto de frónesis en el problem solving
Cuarto examen selectivo OMM_Tam_2011
1. Sean $AB$ un diámetro de una circunferencia con centro en $O$, y $C$ un punto sobre ella de manera tal que $OC$ y $AB$ son perpendiculares. Considere un punto $P$ sobre el arco $BC$. Sean $Q$ la intersección de las rectas $CP$ y $AB$, y $R$ la intersección de la recta $AP$ con la recta perpendicular a $AB$ que pasa por $Q$. Demostrar que $BQ = RQ$.
2. Determina el mayor entero positivo $n$ para el cual existe una reordenación $a,b,c,d$ de los números $3,6,9,12$ de manera que
$$\sqrt[n]{3^a\times6^b\times9^c\times12^d}$$
es un entero.
PISA: pensar la educación matemática de otra manera
Parece ser que los escuelantes y los profesores de secundaria y bachillerato han sido tomados por sorpresa por los exámenes ENLACE, PISA y CENEVAL. Y más sorprendidos están los administradores educativos desde los expertos de la SEP hasta los directores de escuela (pasando por los líderes sindicales). Pues la consigna, no expresada pero vigente, de los administradores es: que todos pasen, así se tengan que inflar las calificaciones.
Selección norestense, Tamaulipas 2011
A petición del delegado Tamaulipas de la Olimpiada Mexicana de Matemáticas, se publican enseguida los resultados finales de los tres exámenes selectivos aplicados a los 25 seleccionados en la etapa estatal de la Olimpiada Mexicana de Matemáticas (Delegación Tamaulipas) --celebrada el día 9 de septiembre de 2011 en las instalaciones de la UAMCEH-UAT.
Los 15 alumnos de mayor puntuación participarán en la Olimpiada Norestense de Matemáticas que se efectuará los días 20, 21 y 22 de octubre de 2011 en la ciudad de Saltullo, Coahuila.
Resultados (y problemas) del examen selectivo 3 OMM_Tam_2011
La suerte está echada. Hagan sus cuentas.