Publicaciones Recientes
Construir un triángulo (dados ortocentro y dos puntos medios)
Dados 3 puntos no alineados M,N,P, sabemos que M y N son puntos medios de dos lados de un triángulo y que P es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.
¿Puedes maliciar que es suma de dos cuadrados?
Sea P(X,Y)=2X2−6XY+5Y2. Diremos que un número entero A es un valor de P si existen números enteros B y C tales que A=P(B,C).
- i) Determinar cuántos elementos de {1,2,3,...,100} son valores de P.
- ii) Probar que el producto de valores de P es un valor de P.
Combinatoria con números de 3 cifras distintas elegidas de entre 5
Encontrar un número N de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de N.
Función creciente en [0,1]
Sea F una función creciente definida para todo número real x, $0\leq x \leq 1, tal que:
- (a) F(0)=0
- (b) F(x/3)=F(x)/2
- (c) F(1−x)=1−F(x)
Encontrar F(18/1991)
Dos perpendiculares seccionan un cuadrado
Dos rectas perpendiculares dividen un cuadrado en cuatro partes, tres de las cuales tienen cada una área igual a 1. Demostrar que el área del cuadrado es cuatro.
Sumas de 14 más menos unos
A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?
Propiedad de un polinomio cúbico
Sea f(x) un polinomio de grado 3 con coeficientes racionales. Probar que si el gráfico de f es tangente al eje x, entonces f(x) tiene sus 3 raíces racionales.
Recorridos en un tablero
Sean A y B vértices opuestos de un tablero cuadriculado de n por n casillas (n≥1), a cada una de las cuales se añade su diagonal de dirección AB, formándose así 2n2 triángulos iguales. Se mueve una ficha recorriendo un camino que va desde A hasta B formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.
¿Cómo se demuestra circunferencia ortogonal?
Sean C1 una circunferencia, AB uno de sus diámetros, t su tangente en B, y M un punto de C1 distinto de A. Se construye una circunferencia C2 tangente a C1 en M y a la recta t.
- a) Determinar el punto P de tangencia de t y C2 y hallar el lugar geométrico de los centros de las circunferencias al variar M.
- b) Demostrar que existe una circunferencia ortogonal a todas las circunferencias C2.
NOTA: Dos circunferencias son ortogonales si se cortan y las tangentes respectivas en los puntos de intersección son perpendiculares.
Divisibilidad de un polinomio
Sea f(x)=(x+b)2−c, un polinomio con b y c números enteros.
- a) Si p es un número primo tal que p divide a c y p2 no divide a c, demostrar que, cualquiera que sea el número entero n, p2 no divide a f(n).
- b) Sea q un número primo, distinto de 2, que divide a c. Si q divide a f(n) para algún número entero n, demostrar que para cada entero positivo r existe un número entero n′ tal que qr divide a f(n′).
