Publicaciones Recientes

Problema

Triángulo con incírculo y tres circunferencias más

Enviado por jmd el 11 de Enero de 2012 - 20:53.

Sea ABC un triángulo y sean X,Y,Z los puntos de tangencia de su incírculo con los lados BC,CA,AB, respectivamente. Suponga que C1,C2,C3 son circunferencias con cuerdas XY,ZX,YZ, respectivamente, tales que C1 y C2 se cortan sobre la recta CZ y que C1 y C3 se corten sobre la recta BY. Suponga que C1 corta a las cuerdas XY y ZX en J y M, respectivamente; que C2 corta a las cuerdas YZ y XY en L e I, respectivamente; y que C3 corta a las cuerdas YZ y ZX en K y N, respectivamente. Demostrar que I,J,K,L,M,N están sobre una misma circunferencia.

Problema

Ecuación de inversos OIM 2011

Enviado por jmd el 11 de Enero de 2012 - 20:51.

Encontrar todos los enteros positivos n para los cuales existen tres enteros no nulos x,y,z tales que x+y+z=0 y 1x+1y+1z=1n

Problema

Por 2, por 3 o más uno

Enviado por jmd el 11 de Enero de 2012 - 20:49.

En la pizarra está escrito el número 2. Ana y Bruno juegan alternadamente, comenzando por Ana. Cada uno en su turno sustituye el número escrito por el que se obtiene de aplicar exactamente una de las siguiente operaciones: multiplicarlo por 2 o multiplicarlo por 3 o sumarle 1. El primero que obtenga un resultado mayor o igual a 2011 gana. Decidir quién tiene una estrategia ganadora y describirla.

Problema

Mesa redonda con vasijas y personas

Enviado por jmd el 11 de Enero de 2012 - 20:47.

Alrededor de una mesa redonda hay 12 personas, y sobre la mesa hay 28 vasijas. Una persona puede ver a otra si y sólo si no hay ninguna vasija alineada con ellos. Demostrar que hay por lo menos dos personas que se pueden ver la una a la otra.

Problema

Colinealidad en configuración de cíclico con ortodiagonales

Enviado por jmd el 11 de Enero de 2012 - 20:45.

Sea ABCD un cuadrilátero cíclico cuyas diagonales AC y BD son perpendiculares. Sean O el circuncentro de ABC, K el punto de intersección de las diagonales, LO el punto de intersección de las circunferencias circunscritas a OACOBD, y G el punto de intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de los lados de ABCD. Demostrar que O,K,L,G están alineados.

Problema

Medias enteras

Enviado por jmd el 11 de Enero de 2012 - 20:43.

Las medias aritmética, geométrica y armónica de dos enteros positivos distintos son todas números enteros. Hallar el menor valor posible de la media aritmética de los dos enteros.

Problema

Concurrencia en configuración de in y circuncírculos

Enviado por jmd el 11 de Enero de 2012 - 20:41.

Sea Γ el incírculo de un triángulo escaleno ABC, que es tangente a los lados BC,CA,AB en los puntos D,E,F respectivamente. Las rectas EF y BC se cortan en G. La circunferencia de diámetro GD corta a Γ por segunda vez en R. Sean P y Q los puntos de intersección (distintos de R) de Γ con BR y CR, respectivamente. Las rectas BQ y CP se cortan en X, el circuncírculo de CDE corta a QR en M y el circuncírculo de BDF corta a PR en N. Demostrar que PM,QN y RX son concurrentes.

Problema

Sucesión en enteros indecisa

Enviado por jmd el 11 de Enero de 2012 - 20:31.

Decidir si existen enteros positivos a y b tales que todos los términos de la sucesión (Xn), definida como X1=2010,X2=2011, Xn+2=Xn+Xn+1+aXnXn+1+b son números enteros.

Problema

Diez monedas, dos preguntas

Enviado por jmd el 11 de Enero de 2012 - 20:30.

Se tienen diez monedas indistinguibles en hilera. Se sabe que dos de ellas son falsas y están en posiciones consecutivas en la hilera. Una pregunta consiste en elegir un subconjunto cualquiera de las monedas y preguntar cuántas de ellas son falsas.  Decidir si es posible identificar con certeza las monedas falsas haciendo solamente dos preguntas, sin conocer la respuesta de la primera antes de formular la segunda.

Problema

Números racionales!!!

Enviado por cuauhtemoc el 10 de Enero de 2012 - 16:53.

Demuestra que la suma de las raíces cuadradas de 2 y 3 suman un número irracional. Esto es, 2+3 es irracional.

Distribuir contenido