Publicaciones Recientes
6.- 480°???
Sea ABC un triángulo equilátero. Sean A1, B1 y C1 puntos interiores de ABC tales que BA1 = A1C, CB1 = B1A, AC1 = C1B y <BA1C + <CB1A + <AC1B = 480°.
Las rectas BC1 y CB1 se cortan en A2, las rectas CA1 y AC1 se cortan en B2, y las rectas AB1 y BA1 se cortan en C2.
Demuestra que si el triángulo A1B1C1 es escaleno, entonces los tres circuncírculos de los triángulos AA1A2, BB1B2 y CC1C2 pasan todos por dos puntos comunes.
NOTA: un triángulo escaleno tiene sus 3 longitudes de lados distintos.
5.- Triángulo Japonés
Sea n un entero positivo. Un triángulo japonés consiste en 1 + 2 + ... + n círculos iguales acomodados en forma de triángulo equilátero de modo que para cada i = 1, 2, ..., n, la fila número i contiene exactamente i círculos, de los cuales exactamente uno de ellos se pinta de rojo. Un camino ninja en un triángulo japoné es una sucesión de n círculos que comienza en el círculo de la fila superior y termina en el círculo de la fila inferior, pasando sucesivamente de un círculo a uno de los dos círculos inmediatamente debajo de él.
4.- El término 2023
Sean x1, x2, ..., x2023 números reales positivos, todos distintos entre sí, tales que
an = √(x1+x2+...+xn)(1x1+1x2+...+1xn)
es entero para todo n = 1, 2, ..., 2023. Demuestra que a2023≥3034.
3.- Un polinomio, una sucesión infinita
Para cada entero k≥2, determina todas las sucesiones infinitas de enteros positivos a1,a2,… para los cuales existe un polinomio P de la forma P(x)=xk+ck−1xk−1+...+c1x+c0, con c0,c1,…,ck−1 enteros no negativos, tal que
P(an)=an+1an+2⋯an+k
para todo n≥1
2.- Revive la geo con una concurrencia
Sea ABC un triángulo acutángulo con AB<AC. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco CB de Ω que contiene a A. La perpendicular por A por BC corta al segmento BS en D y a Ω de nuevo en E ≠ A. La paralela a BC por D corta a la recta BE en L. Sea ω el circuncírculo del triángulo BDL. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <BAC.
1.- No le tengas miedo a la IMO
Determina todos los enteros compuestos n>1 que satisfacen la siguiente propiedad:
Si d1,d2,…,dk son todos los divisores positivos de n con 1=d1<d2<⋯<dk=n, entonces di divide a di+1+di+2 para cada 1≤i≤k−2.
P8. Hexágonos de palitos con áreas iguales
Se tienen nueve palitos de madera: tres azules de longitud a cada uno, tres rojos de longitud r cada uno y tres verdes de longitud v cada uno, tales que es posible formar un triángulo T con palitos de colores distintos.
Dana puede formar dos arreglos, comenzando con T y utilizando los otros seis palitos para prolongar los lados de T, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.

P7. El orden de x, y y z es independiente de a y b.
Supongamos que a y b son dos números reales tales que 0<a<b<1. Sean :
x=1√b−1√a+b,y=1b−a−1byz=1√b−a−1√bMuestra que x, y y z quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de a y b. Encuentra dicho orden entre x, y y z.
P6. Borrando números del pizarrón
Alka encuentra escrito en un pizarrón un número n que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:
- Borrar el número escrito m y escribir su cubo m3.
- Borrar el número escrito m y escribir el producto 2023⋅m
Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número r. Si las cifras de las decenas de r es un número impar, encuentra todos los valores posibles que la cifra de las decenas de n3 pudo haber tenido.
P5. Palitos y perímetro
Mía tiene dos palitos verdes de 3cm cada uno, dos palitos azules de 4cm cada uno y dos palitos rojos de 5cm cada uno. Mía quiere formar un triángulo utilizando los seis palitos como su perímetro; todos a la vez y sin encimarlos, ni doblarlos o romperlos. ¿Cuántos triángulos no croncruentes puede formar?
Nota: Dos triángulos son congruentes si sus lados correspondientes tienen las mismas medidas. No importa el orden en que los palitos se usen para formar los lados, sólo la medida de los lados formados.
