II Concurso Femenil OMM
P8. Hexágonos de palitos con áreas iguales
Se tienen nueve palitos de madera: tres azules de longitud $a$ cada uno, tres rojos de longitud $r$ cada uno y tres verdes de longitud $v$ cada uno, tales que es posible formar un triángulo $T$ con palitos de colores distintos.
Dana puede formar dos arreglos, comenzando con $T$ y utilizando los otros seis palitos para prolongar los lados de $T$, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.
P7. El orden de $x$, $y$ y $z$ es independiente de $a$ y $b$.
Supongamos que $a$ y $b$ son dos números reales tales que $0 < a < b <1$. Sean :
\[x = \frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a+b}}, \quad y = \frac{1}{b-a} - \frac{1}{b} \quad \textrm{y} \quad z =\frac{1}{\sqrt{b-a}} - \frac{1}{\sqrt{b}} \]Muestra que $x$, $y$ y $z$ quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de $a$ y $b$. Encuentra dicho orden entre $x$, $y$ y $z$.
P6. Borrando números del pizarrón
Alka encuentra escrito en un pizarrón un número $n$ que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:
- Borrar el número escrito $m$ y escribir su cubo $m^3$.
- Borrar el número escrito $m$ y escribir el producto $2023\cdot m$
Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número $r$. Si las cifras de las decenas de $r$ es un número impar, encuentra todos los valores posibles que la cifra de las decenas de $n^3$ pudo haber tenido.
P5. Palitos y perímetro
Mía tiene dos palitos verdes de 3cm cada uno, dos palitos azules de 4cm cada uno y dos palitos rojos de 5cm cada uno. Mía quiere formar un triángulo utilizando los seis palitos como su perímetro; todos a la vez y sin encimarlos, ni doblarlos o romperlos. ¿Cuántos triángulos no croncruentes puede formar?
Nota: Dos triángulos son congruentes si sus lados correspondientes tienen las mismas medidas. No importa el orden en que los palitos se usen para formar los lados, sólo la medida de los lados formados.
P4. Encuentra todas las asignaciones f(m,n)
P3. Un país llamado Máxico
Un país llamado Máxico tiene dos islas, la isla Mayor y la isla Menor. La isla Mayor está compuesta por $k>3$ estados con exactamente $n>3$ ciudades cada uno, de manera que tiene $kn$ ciudades en total. La isla Menor tiene sólo un estado que tiene 31 ciudades en total. Dos aerolíneas de alto renombre, Aeropapantla y Aerocenzontle, ofrecen vuelos alrededor de Máxico. Aeropapantla ofrece vuelos directos desde cualquier ciudad hasta cualquier otra ciudad de Máxico. Aerocenzontle solo ofrece vuelos directos desde cualquier ciudad de la isla Mayor a cualquier otra ciudad de la isla Mayor.
P2. Matilda dibuja cuadriláteros
Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?