II Concurso Femenil OMM

Segundo Concurso Nacional Femenil de la Olimpiada Mexicana de Matemáticas celebrada en Oaextepec de Morelos del 9 al 16 de Junio de 2023
Problema

P8. Hexágonos de palitos con áreas iguales

Enviado por jesus el 26 de Junio de 2023 - 15:01.

Se tienen nueve palitos de madera: tres azules de longitud $a$ cada uno, tres rojos de longitud $r$ cada uno y tres verdes de longitud $v$ cada uno, tales que es posible formar un triángulo $T$ con palitos de colores distintos.

Dana puede formar dos arreglos, comenzando con $T$ y utilizando los otros seis palitos para prolongar los lados de $T$, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.

Problema

P7. El orden de $x$, $y$ y $z$ es independiente de $a$ y $b$.

Enviado por jesus el 26 de Junio de 2023 - 14:43.

Supongamos que $a$ y $b$ son dos números reales tales que $0 < a < b <1$. Sean :

\[x = \frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a+b}}, \quad y = \frac{1}{b-a} - \frac{1}{b} \quad \textrm{y} \quad z =\frac{1}{\sqrt{b-a}} - \frac{1}{\sqrt{b}} \]

Muestra que $x$, $y$ y $z$ quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de $a$ y $b$. Encuentra dicho orden entre $x$, $y$ y $z$.

Problema

P6. Borrando números del pizarrón

Enviado por jesus el 26 de Junio de 2023 - 14:35.

Alka encuentra escrito en un pizarrón un número $n$ que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:

  1. Borrar el número escrito $m$ y escribir su cubo $m^3$.
  2. Borrar el número escrito $m$ y escribir el producto $2023\cdot m$

Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número $r$. Si las cifras de las decenas de $r$ es un número impar, encuentra todos los valores posibles que la cifra de las decenas de $n^3$ pudo haber tenido.

Problema

P5. Palitos y perímetro

Enviado por jesus el 26 de Junio de 2023 - 13:24.

Mía tiene dos palitos verdes de 3cm cada uno, dos palitos azules de 4cm cada uno y dos palitos rojos de 5cm cada uno. Mía quiere formar un triángulo utilizando los seis palitos como su perímetro; todos a la vez y sin encimarlos, ni doblarlos o romperlos. ¿Cuántos triángulos no croncruentes puede formar?

Nota: Dos triángulos son congruentes si sus lados correspondientes tienen las mismas medidas. No importa el orden en que los palitos se usen para formar los lados, sólo la medida de los lados formados.

Problema

P4. Encuentra todas las asignaciones f(m,n)

Enviado por jesus el 19 de Junio de 2023 - 18:27.
Se tiene un función $g$ tal que para todo entero $n$: \[ g(n) = \begin{cases} 1 &\quad \textrm{si } n \geq 1 \\ 0& \quad \textrm{si } n \leq 0 \end{cases} \] También se tiene la función $f$ que cumple lo siguiente para todos los enteros $n \geq 0$ y $m \geq 0$: \[f(0,m) =0 \quad \textrm{y}\] \[f(n+1, m) = \Big( 1 -g(m) + g(m) \cdot g\big(m-1 - f(n,m)\big) \Big)\Big(1+ f(n,m) \Big)\] Encuentra todas las posibles funciones $f$ que cumplen estas condiciones. Es decir, encuentra todas las asignaciones $f(m,n)$ que cumplan las propiedades de arriba para todos los enteros $n \geq 0$ y $m \geq 0$.
Problema

P3. Un país llamado Máxico

Enviado por jesus el 19 de Junio de 2023 - 18:16.

Un país llamado Máxico tiene dos islas, la isla Mayor y la isla Menor. La isla Mayor está compuesta por $k>3$ estados con exactamente $n>3$ ciudades cada uno, de manera que tiene $kn$ ciudades en total. La isla Menor tiene sólo un estado que tiene 31 ciudades en total. Dos aerolíneas de alto renombre, Aeropapantla y Aerocenzontle, ofrecen vuelos alrededor de Máxico. Aeropapantla ofrece vuelos directos desde cualquier ciudad hasta cualquier otra ciudad de Máxico. Aerocenzontle solo ofrece vuelos directos desde cualquier ciudad de la isla Mayor a cualquier otra ciudad de la isla Mayor.

Problema

P2. Matilda dibuja cuadriláteros

Enviado por jesus el 19 de Junio de 2023 - 17:51.

Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?

Problema

P1. Enciclopedia de Gabriela

Enviado por jesus el 19 de Junio de 2023 - 17:32.
Gabriela encontró una enciclopedia de 2023 páginas, numeradas del 1 al 2023. Notó que las páginas cuyo número está formado por únicamente dígitos pares tienen una marca azul. También notó que cada 3 páginas hay una marca roja y que la primera marca roja está en la página 2. ¿Cuántas páginas de la enciclopedia están marcadas con ambos colores?
Distribuir contenido