Publicaciones Recientes
P6. Borrando pizarrón hasta que ambos sumen un múltiplo de 3
Ana y Beto juegan en un pizarrón donde se han colocado los números del 1 al 2024. En cada turno Ana escoge tres números a,b,c escritos en el pizarrón y en su turno Beto los borra y reescribe alguno de los números:
a+b−c,a−b+c,b+c−a
El juego termina cuando quedan solamente dos números y Ana no puede hacer su jugada. si la suma de los números que quedan al final es múltiplo de 3, Beto gana. En caso contrario, Ana gana. ¿Quién puede asegurar su victoria?
P5. Conjuntos infinitos iguales y uno en sucesión aritmética
Sean A y B dos conjuntos finitos de números reales positivos tales que:
- Para cualquier par de elementos u≥v de A, se cumple que u+v es elemento de B
- Para cualquier par de elementos s>t de B, se cumple que s−t es un elemento de A
Prueba que A=B o existe un número real r tal que B={2r,3r,4r,…}
P4. Cuarta concurrencia en un ortocentro
Sea ABC un triángulo acutángulo con ortocentro H y sea M un punto del segmento BC. La recta por M y perpendicular a BC corta a las rectas BH y CH en los puntos P y Q, respectivamente. Muestra que la recta AM pasa por el ortocentro del triángulo HPQ.
P3. Hexágono, puntos medios, dodecágono, estrella
Sea ABCDEF un hexágono convexo y sean A1,B1,C1,D1,E1,F1 los puntos medios de AB,BC,CD,DE,EF,FA respectivamente. Se construyen los puntos A2,B2,C2,D2,E2,F2 en el interior de A1B1C1D1E1F1 tales que:
- El dodecágono A2A1B2B1C2C1D2D1E2E1F2F1 tiene sus 12 lados iguales
- ∠A1B2B1+∠C1D2D1+∠E1F2F1=∠B1C2C1+∠D1E2E1+∠F1A2A1=360°, donde todos los ángulos son menores a 180°
Demuestra que Α2B2C2D2E2F2 es cíclico.
P2. Divisores consecutivos
Determina todas las parejas de enteros (a,b) que satisfacen:
- 5≤b<a
- Existe un número natural n tal que los números ab y a−b son divisores consecutivos de n, en ese orden. Es decir, que no existe un divisor d de n tal que ab<d<a−b
P1. Rompecabezas especial
En la figura se, se muestran las 6 maneras distintas en que se puede colorear un cuadrado de 1×1 subdividido en 4 cuadritos de 12×12 con cuatro colores distintos (dos coloreados se consideran iguales si es posible rotar uno para obtener el otro). Cada uno de estos cuadrados de 1×1 se usará como pieza de un rompecabezas. Las piezas se pueden rotar, pero no reflejar. Dos piezas encajan si al unirlas por un lado completo, los cuadritos de 12×12 a ambos lados del lado por el que se unen son del mismo color (ver ejemplos). ¿Es posible armar un rompecabezas de 3×2 utilizando cada pieza exactamente una vez y de forma que todas las piezas adyacentes encajen?
Resultados XXXVIII OMM
Hola. Les escribo desde mi casa, pero ahora mi casa de CDMX. A partir de este año, como algunos ya sabrán, a los nacionales que vaya iré como codelegado (aunque este fui de visitante XD). No pude estar presente toda la semana por motivos escolares, pero ahí anduve.
Tenemos noticias buenas y malas. La mala, y la única, es que Tamaulipas quedó en lugar 26. Igualmente nadie debe sentirse mal por ese resultado, este año tuvimos a puros nuevos. El único que repetía era Edu y apenas es su segundo año en la olimpiada en general.
P6. La lista de Germán
Sea n un entero positivo. Germán tiene una lista de n números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para n.
P5. Dos circunferencias, una perpendicular.
Sea ABC un triángulo acutángulo y ω su circuncírculo. Sea Γ un círculo con centro A de forma que corta al arco AB que no contiene a C de ω en un punto D y al arco AC que no contiene a B de ω en un punto E. Sea K la intersección de BE con CD de tal forma que K esté sobre Γ. Demuestra que AK es perpendicular a BC.
P4. Ceros y Unos en un pizarrón.
- ¿Para qué valores de n te puede quedar un número par?
- ¿Para qué valores de n te puede quedar un número impar?