Selectivo Final OMM Tamaulipas 2024
P6. La lista de Germán
Sea $n$ un entero positivo. Germán tiene una lista de $n$ números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para $n$.
P5. Dos circunferencias, una perpendicular.
Sea $ABC$ un triángulo acutángulo y $\omega$ su circuncírculo. Sea $\Gamma$ un círculo con centro $A$ de forma que corta al arco $AB$ que no contiene a $C$ de $\omega$ en un punto $D$ y al arco $AC$ que no contiene a $B$ de $\omega$ en un punto $E$. Sea $K$ la intersección de $BE$ con $CD$ de tal forma que $K$ esté sobre $\Gamma$. Demuestra que $AK$ es perpendicular a $BC$.
P4. Ceros y Unos en un pizarrón.
- ¿Para qué valores de $n$ te puede quedar un número par?
- ¿Para qué valores de $n$ te puede quedar un número impar?
P3. Desigualdades en un selectivo
Sean $a,b,c$ números reales positivos tales que $abc=\frac{1}{8}$. Demuestra que: \[a^2+b^2+c^2+a^2b^2+a^2c^2+b^2c^2\geq\frac{15}{16}\]
P2. Los monos de Daniel
Daniel tiene 1600 plátanos y 100 monos. Él va a repartir sus plátanos entre sus 100 monos (pero no de forma justa, algunos tendrán más plátanos que otros, incluso habrá monos que no reciban ningún plátano). Demuestra que al menos 4 monos tendrán la misma cantidad de plátanos.