Selectivo Final OMM Tamaulipas 2024

Problema

P6. La lista de Germán

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:16.

Sea $n$ un entero positivo. Germán tiene una lista de $n$ números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para $n$. 

Problema

P5. Dos circunferencias, una perpendicular.

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:12.

Sea $ABC$ un triángulo acutángulo y $\omega$ su circuncírculo. Sea $\Gamma$ un círculo con centro $A$ de forma que corta al arco $AB$ que no contiene a $C$ de $\omega$ en un punto $D$ y al arco $AC$ que no contiene a $B$ de $\omega$ en un punto  $E$. Sea $K$ la intersección de $BE$ con $CD$ de tal forma que $K$ esté sobre $\Gamma$. Demuestra que $AK$ es perpendicular a $BC$.

Problema

P4. Ceros y Unos en un pizarrón.

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:08.
Sea $n$ entero positivo. Hay $2n$ números escritos en el pizarrón: $n$ 0’s y $n$ 1’s. Una movida consiste en escoger dos números del pizarrón, borrarlos y escribir 0 si eran iguales o 1 si eran distintos. Despues de hacer varias movidas, queda solo un número.
  • ¿Para qué valores de $n$ te puede quedar un número par?
  • ¿Para qué valores de $n$ te puede quedar un número impar?
    
Problema

P3. Desigualdades en un selectivo

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:05.

Sean $a,b,c$ números reales positivos tales que $abc=\frac{1}{8}$. Demuestra que: \[a^2+b^2+c^2+a^2b^2+a^2c^2+b^2c^2\geq\frac{15}{16}\]

Problema

P2. Los monos de Daniel

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:02.

Daniel tiene 1600 plátanos y 100 monos. Él va a repartir sus plátanos entre sus 100 monos (pero no de forma justa, algunos tendrán más plátanos que otros, incluso habrá monos que no reciban ningún plátano). Demuestra que al menos 4 monos tendrán la misma cantidad de plátanos.

Problema

P1. Repaso de la cantidad de divisores de un número.

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:00.
Un entero positivo $n$ tiene exactamente 2 divisores, mientras que el número $n + 1$ tiene exactamente 3
divisores. ¿Cuál es la mayor cantidad de divisores que puede tener el número $n + 2$?
Distribuir contenido