Para cualquier número entero $n>0$, se define:
1. $f(n, 0) = 1$ y $f(n, n) = 1$
2. $f(n, k) = f(n - 1, k - 1) + f(n - 1, k)$ para $0<k<n$.
¿Cuántos cálculos se tienen que hacer para encontrar el valor de $f(3991, 1993)$,
sin contar aquellos de la forma $f(n, 0)$ y $f(n, n)$?
P4. OMM 1993. Recurrencia en dos variables
»
- Inicie sesión o regístrese para enviar comentarios