Municipal OMM Tamaulipas 2014

Problema

Ejercicio en matemáticas del reloj

Enviado por jmd el 13 de Mayo de 2014 - 08:18.
Los números del 1 al 1000 se colocan en orden alrededor de una circunferencia. Empezando con el 1 se marca cada quinceavo número (el 16, el 31, etc.). Este proceso se continúa sobre los números en la circunferencia hasta llegar a un número ya marcado. ¿Cuántos números quedan no marcados?
 
Problema

Ejercicio en diferencia de cuadrados

Enviado por jmd el 13 de Mayo de 2014 - 08:17.

La diferencia de dos números es 2 y la diferencia de sus cuadrados es 8. ¿Cuánto vale su suma?

Problema

Recuerdos de Querétaro 1998

Enviado por jmd el 13 de Mayo de 2014 - 08:16.

Encontrar los enteros positivos mínimo (m) y máximo (M) que se pueden expresar en la forma $1/a_1+2/a_2+3/a_3+...+9/a_9$ (Donde $a_1,...,a_9$ son dígitos, no necesariamente distintos.)

 

Problema

Suertudos

Enviado por jmd el 13 de Mayo de 2014 - 08:14.

Un número se dice que es suertudo si al sumar los cuadrados de sus cifras y repetir esta operación suficientes veces se obtiene el número 1. Por ejemplo el número 1900 es suertudo, pues en la primera operación se obtiene 82, en la segunda 64+4=68, en la tercera se obtiene 100 y en la cuarta se obtiene el 1. Encontrar dos números  consecutivos que sean suertudos.

 

Problema

3m+2 nunca es cuadrado perfecto

Enviado por jmd el 13 de Mayo de 2014 - 08:12.

Sea m un entero. ¿Puede ser cuadrado perfecto un número de la forma 3m+2?

Problema

Ejercicio de asociación de ideas

Enviado por jmd el 13 de Mayo de 2014 - 08:11.

Calcular el valor de $x^3+1/x^3$ si se sabe que $x+1/x=9$.  

 

Problema

Ejercicio de reconocimiento de un producto notable

Enviado por jmd el 13 de Mayo de 2014 - 08:10.

Calcular el valor de

$$\frac{2x+8}{\sqrt{2x+1}+\sqrt{x-3}}$$

si se sabe que $\sqrt{2x+1}-\sqrt{x-3}=2$.

Problema

Ejercicio con rectángulo y punto medio

Enviado por jmd el 13 de Mayo de 2014 - 08:09.

En un rectángulo ABCD, M es el punto medio de BC. Si T es el pie de la perpendicular a AM bajada desde D demostrar que CT=CD.

 

Problema

Cuadrado mágico inconcluso

Enviado por jmd el 13 de Mayo de 2014 - 08:07.

Los números del 1 al 16 se colocan en una cuadrícula de 4 por 4 de manera que la suma por columnas, por filas y por diagonal es la misma. En la siguiente cuadrícula solamente algunas casillas se han llenado. Termina de llenarla.

__ __  3  16
__ 15 __   5
14 __  8  11
7  12  13 __

Problema

Examen con castigo al tin marín

Enviado por jmd el 13 de Mayo de 2014 - 08:04.

En un examen de 10 preguntas, Juan las respondió todas y obtuvo 29 puntos. Si ledieron 5 puntos por cada respuesta correcta y -2 por cada incorrecta ¿cuántas preguntas respondió Juan correctamente?

 

Distribuir contenido