Sean $x_1,x_2,\ldots,x_n$ números reales positivos. Demostrar que existen $a_1,a_2,\ldots,a_n\in\{-1,1\}$ tales que $$a_1x_1^2+a_2x_2^2+\ldots+a_nx_n^2\geq(a_1x_1+a_2x_2+\ldots+a_nx_n)^2$$
Sean $x_1,x_2,\ldots,x_n$ números reales positivos. Demostrar que existen $a_1,a_2,\ldots,a_n\in\{-1,1\}$ tales que $$a_1x_1^2+a_2x_2^2+\ldots+a_nx_n^2\geq(a_1x_1+a_2x_2+\ldots+a_nx_n)^2$$