Publicaciones Recientes
Resultados del segundo examen selectivo
Los primeros 16 de la siguiente tabla son los preseleccionados que permanecen. Las gracias les sean dadas a todos los participantes por apostar su tiempo y esfuerzo en favor de las matemáticas.
Puntajes en el segundo selectivo
Una diofantina muy difícil
Resolver la ecuación diofantina siguiente para enteros no negativos x,y,z:
$$x^2+y^4+z^6=2^{1111}$$
Inferencias de paridad
Sea $n\geq2$ un entero. Los números $x_1,x_2,\ldots,x_n$ son elementos del conjunto $\{-1,1\}$ y cumplen la ecuación $x_1x_2+x_2x_3+\ldots+x_nx_1=0$. Demostrar que $ n $ es múltiplo de 4.
Adictos al Xbox
Los adolescentes de una preselección olímpica de matemáticas tienen una actividad de entretenimiento favorita: 17 son adictos al Xbox (conjunto A1), 13 a las series americanas de TV (A2), 8 a la resolución de problemas de concurso (A3), y 6 no tienen actividad recreativa conocida.
Pudorosa (segunda parte)
Decidir --con prueba-- si la ecuación diofantina $123x+426y=8$ tiene solución.
Una pudorosa propiedad del máximo común divisor
Si $a, b$ son enteros y cumplen $7a-38b=-2$ ¿qué se puede concluir sobre el máximo común divisor de a y b?
Cuadrilátero en un cubo
En un cubo de arista 6 los puntos medios B,D de dos aristas opuestas, y dos vértices opuestos A,C pero no en las aristas de los puntos medios B,D, forman un cuadrilátero ABCD. Encontrar el área de ese cuadrilátero.
![](https://www.matetam.com/sites/default/files/imagecache/teaser/cubo.png)
¿Es múltiplo de 11? (Que lo diga Fermat.)
Decidir --con prueba-- si $61^{61}+71^{71}$ es divisible entre 11.
ExSel2_Pr1: Inclusión y exclusión... pero basta con razonarlo
¿Cuántos números enteros positivos no mayores que 1000 no son ni cuadrados ni cubos?
Elemental,... pero sólo si sabes usar el PTF
Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$
![Publicaciones Recientes Distribuir contenido](/misc/feed.png)