Publicaciones Recientes

Problema

Problema 6, XII Olimpiada Iberoamericana

Enviado por jesus el 19 de Mayo de 2009 - 23:42.

Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:

$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$

Problema

P3. OMM 1993

Enviado por jesus el 19 de Mayo de 2009 - 17:49.

Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.

Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.

Problema

Partición de un conjunto

Enviado por jmd el 19 de Mayo de 2009 - 17:00.

Encontrar todos los enteros positivos $ n $ para los cuales el conjunto $A= \{n, n+1, n+2, n+3, n+4, n+5\}$ puede particionarse en dos subconjuntos con el mismo producto de sus miembros (el producto de los números en uno de los subconjuntos es igual al producto de los números en el otro).
 

Problema

Residuo de un factorial (módulo un primo)

Enviado por jmd el 19 de Mayo de 2009 - 11:02.

Encontrar el residuo que deja 50(50!) al dividirlo entre 53.

Problema

Inverso (mod 151) de una potencia de 2

Enviado por jmd el 19 de Mayo de 2009 - 10:21.

Encontrar un número entero positivo que al multiplicarlo por $2^{145}$ y al resultado restarle 1, se obtenga un múltiplo de 151.

Problema

Expresable como combinación lineal

Enviado por jmd el 19 de Mayo de 2009 - 09:41.

Decidir (con justificación) cuál de los tres números $2007, 2008, 2009$ podría ser expresado como una combinación lineal entera de 453 y 408, es decir, en la forma $453x+408y$, con $x, y$ enteros.
 

Problema

Encontrar un residuo

Enviado por jmd el 19 de Mayo de 2009 - 09:20.

Encontrar el residuo que deja $2009^{2008}$ al dividirlo entre $9$

Problema

El polo de la recta que pasa por el vértice y el punto de tangencia.

Enviado por jesus el 18 de Mayo de 2009 - 17:37.

Sea $ ABC$ un triángulo y sean $ D$, $ E$ y $ F$ los puntos donde la circunferencia circunscrita es tangente al lado $ BC$, $CA$ y $ AB$. Llamemos $D'$ el punto donde la recta $EF$ corta a la recta $AB$. Demuestra que:

a) $D'$ es el conjugado armónico de $D$ con respecto al segmento $ AB$.

b) Que la recta $AD$ es la polar de $D'$ respecto al incírculo.

Problema

Demostrar cuadrado

Enviado por Luis Brandon el 18 de Mayo de 2009 - 13:03.

Sea ABCD un cuadrilatero tal que los angulos internos en los vertices A, B, y C son de cuarenta y cinco grados. Demostrar que los puntos medios de los lados del cuadrilatero determinan un cuadrado.

Propuesto por: Fernando

Problema

Clasificación de primos que dividen a un cuadrado más uno

Enviado por jesus el 16 de Mayo de 2009 - 23:19.

Demuestra que si $ p$ es un primo impar que divide a $n^2 +1$ para algún $ n$, entonces $ p$ debe ser de la forma $4k+1$, es decir, $p \equiv 1$ (mód  4).

Distribuir contenido