Publicaciones Recientes
Doce bolas y tres pesadas
Determinar, con el auxilio de una balanza y en sólo tres pesadas, una bola de entre doce, que pesa distinto a las demás. Además, determinar si la bola pesa más o menos que las otras.
Yoga de leche
Una yoga de 5 litros está llena de leche. Dos botellas vacías de 2 y 3 litros respectivamente están disponibles para transferir el líquido entre las botellas y la yoga de 5 litros. Exhibir un procedimiento para lograr 4 litros de leche en la yoga de 5 litros. Encontrar una sucesión de transferencias de leche de longitud 3.
Las cervezas de Bart Simpson
Bart Simpson cuenta, usando sus dedos de la mano derecha, las cervezas que se ha tomado su papá en la semana. Si cuenta empezando con el meñique y termina en el índice pulgar y vuelve a empezar con el meñique, y contó 777 ¿en qué dedo terminó la cuenta? (Nota: Bart solamente tiene 4 dedos. Además, hay que suponer que sabe contar hasta 777...) ¿En qué dedo terminaría si tuviese 5 dedos?
Fermat converso (en general, espurio)
Demostrar que si $p, q$ son dos primos distintos para los cuales $a^p\equiv a \pmod{q}$ y $a^q\equiv{a} \pmod{p}$, entonces $a^{pq} \equiv a \pmod{pq}$. }
Demostrar, con este resultado, el siguiente contraejemplo para la conversa del pequeño teorema de Fermat: $2^{340} \equiv 1 \pmod{341}$ --¡pero 341 es compuesto!
Una factorización no trivial
Factorizar las siguientes expresiones algebraicas:
$$x^4 +6x^3 +11x^2 +6x +1$$
$$x^4 +6x^3 +11x^2 +6x$$
Genera un problema de concurso, en vista de las dos factorizaciones.
Ángulos en el reloj
¿Cuál es el ángulo que forman las manecillas del reloj a las 9:30? (Argumento fiador requerido.)
Problema 6, XII Olimpiada Iberoamericana
Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:
$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$
P3. OMM 1993
Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.
Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.
Partición de un conjunto
Encontrar todos los enteros positivos $ n $ para los cuales el conjunto $A= \{n, n+1, n+2, n+3, n+4, n+5\}$ puede particionarse en dos subconjuntos con el mismo producto de sus miembros (el producto de los números en uno de los subconjuntos es igual al producto de los números en el otro).
Residuo de un factorial (módulo un primo)
Encontrar el residuo que deja 50(50!) al dividirlo entre 53.