Publicaciones Recientes

Problema

Doce bolas y tres pesadas

Enviado por jesus el 21 de Mayo de 2009 - 16:48.

Determinar, con el auxilio de una balanza y en sólo tres pesadas, una bola de entre doce, que pesa distinto a las demás. Además, determinar si la bola pesa más o menos que las otras.

Problema

Yoga de leche

Enviado por jmd el 21 de Mayo de 2009 - 15:46.

Una yoga de 5 litros está llena de leche. Dos botellas vacías de 2 y 3 litros respectivamente están disponibles para transferir el líquido entre las botellas y la yoga de 5 litros. Exhibir un procedimiento para lograr 4 litros de leche en la yoga de 5 litros. Encontrar una sucesión de transferencias de leche de longitud 3.
 

Problema

Las cervezas de Bart Simpson

Enviado por jmd el 21 de Mayo de 2009 - 11:11.

Bart Simpson cuenta, usando sus dedos de la mano derecha, las cervezas que se ha tomado su papá en la semana. Si cuenta empezando con el meñique y termina en el índice pulgar y vuelve a empezar con el meñique, y contó 777 ¿en qué dedo terminó la cuenta? (Nota: Bart solamente tiene 4 dedos. Además, hay que suponer que sabe contar hasta 777...) ¿En qué dedo terminaría si tuviese 5 dedos?
 

 

Problema

Fermat converso (en general, espurio)

Enviado por jmd el 20 de Mayo de 2009 - 22:19.

Demostrar que si $p, q$ son dos primos distintos para los cuales $a^p\equiv a \pmod{q}$ y $a^q\equiv{a} \pmod{p}$, entonces $a^{pq} \equiv a \pmod{pq}$. }

Demostrar, con este resultado, el siguiente contraejemplo para la conversa del pequeño teorema de Fermat: $2^{340} \equiv 1 \pmod{341}$ --¡pero 341 es compuesto!

Problema

Una factorización no trivial

Enviado por jmd el 20 de Mayo de 2009 - 21:58.

Factorizar las siguientes expresiones algebraicas:

$$x^4 +6x^3 +11x^2 +6x +1$$

$$x^4 +6x^3 +11x^2 +6x$$

Genera un problema de concurso, en vista de las dos factorizaciones.

Problema

Ángulos en el reloj

Enviado por jmd el 20 de Mayo de 2009 - 07:32.

¿Cuál es el ángulo que forman las manecillas del reloj a las 9:30?  (Argumento fiador requerido.)

Problema

Problema 6, XII Olimpiada Iberoamericana

Enviado por jesus el 19 de Mayo de 2009 - 23:42.

Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:

$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$

Problema

P3. OMM 1993

Enviado por jesus el 19 de Mayo de 2009 - 17:49.

Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.

Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.

Problema

Partición de un conjunto

Enviado por jmd el 19 de Mayo de 2009 - 17:00.

Encontrar todos los enteros positivos $ n $ para los cuales el conjunto $A= \{n, n+1, n+2, n+3, n+4, n+5\}$ puede particionarse en dos subconjuntos con el mismo producto de sus miembros (el producto de los números en uno de los subconjuntos es igual al producto de los números en el otro).
 

Problema

Residuo de un factorial (módulo un primo)

Enviado por jmd el 19 de Mayo de 2009 - 11:02.

Encontrar el residuo que deja 50(50!) al dividirlo entre 53.

Distribuir contenido