Publicaciones Recientes
P4. Ana y Beto coloreando cuadrados
Hay 6 cuadrados en una fila. Cada uno se etiqueta con el nombre de Ana o Beto y con un número del 1 al 6, usando cada cada número sin repetir. Ana y Beto juegan a pintar cada cuadrado siguiendo el orden de los números en las etiquetas. Quien pinte el cuadrado será la persona cuyo nombre esté en la etiqueta. Al pintarlo, la persona podrá elegir si pintar el cuadrado de rojo o azul. Beto gana si al final hay la misma cantidad de cuadrados azules como rojos, y Ana gana en caso contrario. ¿En cuántas de todas las posibles maneras de etiquetar los cuadrados puede Beto asegurar su cictoria?
El siguiente es un ejemplo de una asignación de etiquetas.
P3. Triángulo, Altura y punto en Mediatriz.
Sea $ABC$ un triángulo y $D$ el pie de la altura desde $A$. Sea $M$ un punto tal que $MB = MC$. Sean $E$ y $F$ las intersecciones del circuncírculo de $BMD$ y $CMD$ con $AD$. Sean $G$ y $H$ las intersecciones de $MB$ y $MC$ con $AD$. Demuestra que $EG = FH$
P2. Papelitos con números y fracciones con raíces cuadradas racionales.
Se tienen 50 papelitos con los números del 1 al 50. Se quieren tomar 3 papelitos de tal manera que a cualquiera de los 3 números, dividido entre el máximo común divisor de los otros dos, se le puede sacar la raíz cuadrada de tal manera que quede un número racional.
¿Cuántas tercias (no ordenadas) de papelitos cumplen esta condición?
Nota: Un número es racional si se puede escribir como la división de 2 enteros.
P1. Ecuación cuadrática con sumatoria
Resultados XXXVII OMM
Hola, les escribo desde mi casa XD, el día de hoy llegamos a Tamaulipas desde Durango, llegamos a las 7:00 am. La verdad, desde mi punto de vista como participante, el nacional estuvo muy triste, pude haber hecho más. Desde mi punto de vista como persona, es que esta olimpiada estuvo bastante bien como las demás, en los últimos 5 años Tamaulipas no ha caído en el rankin como solía hacerlo en años pasados, manteniendose siempre entre los mejores 16 del país, y en 2 ocasiones entrando en los mejores 8.
Esta año, Tamaulipas quedó en 11° lugar, con los siguientes resultados:
P6 Primer problema real de funcionales
Sea $\mathbb{N}$ el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones $f: \mathbb{N} \rightarrow \mathbb{N}$ tales que cualesquiera $m, n \in \mathbb{N}$ se cumple al mismo tiempo que:
$$f(m+n) \ |\ f(m) + f(n)$$ $$f(m)f(n)\ | \ f(mn)$$
Nota: $a | b$ quiere decir que el número entero $a$ divide al número entero $b$.
P5 Concurrencia de 2 círculos y 1 segmento
Sean $ABC$ un triángulo acutángulo, $\Gamma$ su circuncírculo y $O$ su circuncentro. Sea $F$ el punto en $AC$ tal que $\angle COF = \angle ACB$, donde $F$ y $B$ están de lados opuestos respecto a $CO$. La recta $FO$ corta a $BC$ en $G$. La paralela a $BC$ por $A$ interseca a $\Gamma$ de nuevo en $M$. Las rectas $MG$ y $CO$ se cortan en $K$. Demuestra que los circuncírculos de los triángulos $BGK$ y $AOK$ concurren en $AB$.
P4 Un mago y sus fichas B/N
Dada una colección de varias fichas que pueden ser negras o blancas y que tienen, cada una, un número escrito en ellas, un mago hace el siguiente movimiento: Toca 2 de las fichas con distinto número y color, y la de número menor se convierte en una ficha idéntica a la otra.
Sea $n$ un entero mayor o igual a 2. Para cada uno de los movimientos del 1 al $n$, el mago pone en la mesa una ficha negra o blanca con ese número. Luego hace su $movimiento$ para ir modificando la colección.
P3 Regresa la Geo a la OMM
Sea $ABCD$ un cuadrilátero convexo. Si $M, N, K$ son los puntos medios de los segmentos $AB$, $BC$ y $CD$ respectivamente, y además existe un punto $P$ dentro del cuadrilátero $ABCD$ tal que, $\angle BPN = \angle PAD$ y $\angle CPN = \angle PDA$. Demuestra que $AB \cdot CD$ = $4PM \cdot PK$
P2 Germán y su obsesión con los polígonos regulares.
Los números del 1 al 2000 se encuentran colocados sobre los vértices de un polígono regular de 2000 lados, uno en cada vértice, de manera que se cumple lo siguiente: Si cuatro enteros $A, B, C, D$ cumplen que $1\leq A < B < C < D \leq 2000$, entonces el segmento que une los vértices donde están los números $A$ y $B$ y el segmento que une los vértices donde están $C$ y $D$ no se intersectan en el interior del polígono. Demuestra que existe un entero positivo que es un cuadrado perfecto tal que el número diametralmente opuesto a él no es un número cuadrado perfecto.