Publicaciones Recientes

Problema

P4. Encuentra todas las asignaciones f(m,n)

Enviado por jesus el 19 de Junio de 2023 - 19:27.
Se tiene un función g tal que para todo entero n: g(n)={1si n10si n0 También se tiene la función f que cumple lo siguiente para todos los enteros n0 y m0: f(0,m)=0y f(n+1,m)=(1g(m)+g(m)g(m1f(n,m)))(1+f(n,m)) Encuentra todas las posibles funciones f que cumplen estas condiciones. Es decir, encuentra todas las asignaciones f(m,n) que cumplan las propiedades de arriba para todos los enteros n0 y m0.
Problema

P3. Un país llamado Máxico

Enviado por jesus el 19 de Junio de 2023 - 19:16.

Un país llamado Máxico tiene dos islas, la isla Mayor y la isla Menor. La isla Mayor está compuesta por k>3 estados con exactamente n>3 ciudades cada uno, de manera que tiene kn ciudades en total. La isla Menor tiene sólo un estado que tiene 31 ciudades en total. Dos aerolíneas de alto renombre, Aeropapantla y Aerocenzontle, ofrecen vuelos alrededor de Máxico. Aeropapantla ofrece vuelos directos desde cualquier ciudad hasta cualquier otra ciudad de Máxico. Aerocenzontle solo ofrece vuelos directos desde cualquier ciudad de la isla Mayor a cualquier otra ciudad de la isla Mayor.

Problema

P2. Matilda dibuja cuadriláteros

Enviado por jesus el 19 de Junio de 2023 - 18:51.

Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?

Problema

P1. Enciclopedia de Gabriela

Enviado por jesus el 19 de Junio de 2023 - 18:32.
Gabriela encontró una enciclopedia de 2023 páginas, numeradas del 1 al 2023. Notó que las páginas cuyo número está formado por únicamente dígitos pares tienen una marca azul. También notó que cada 3 páginas hay una marca roja y que la primera marca roja está en la página 2. ¿Cuántas páginas de la enciclopedia están marcadas con ambos colores?
Problema

6.- Punto ideal de semejanza

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 14:57.

Encuentra todos los n3, tales que existe un polígon convexo de n lados A1A2An, que tenga las siguientes características:

  • todos los ángulos internos de A1A2An son iguales
  • no todos los lados de A1A2An son iguales
  • existe un triángulo T y un punto O en el interior de A1A2An tal que los n triángulos OA1A2, OA2A3, , OAn1An son todos semejantes a T 

NOTAS:

Problema

5.- Borrando divisores de un pizarrón

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 14:42.

Sea n>1 un entero positivo y sean d1<d2<...<dm sus m enteros positivos de manera que d1=1 y dm=n. Lalo escribe los siguientes 2m números en un pizarrón:

d1,d2,...,dm,d1+d2,d2+d3,...,dm1+dm,N

donde N es un entero positivo. Después Lalo borra los números repetidos (por ejemplo, si un número repetido aparece 2 veces, el borrará uno de los dos). Después de esto, Lalo nota que los números en el pizarrón son precisamente la lista completa de divisores positivos de N. Encuentra todos los posibles valores del entero positivo n.

Problema

4.- También arquitectos

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 14:32.

Sea n un entero positivo. En un jardín de n×n cuyos lados dan al Norte, Sur, Este y Oeste se va a construir una fuente usando plataformas de 1×1 que cubra todo el jardín.

Ana colocará las plataformas todas a diferente altura. Después, Beto pondrá salidas de agua en algunas de las plataformas.

El agua de cada plataforma puede bajar a las plataformas contiguas (hacia el Norte, Sur, Este y Oeste) que tengan menor altura que la plataforma de donde viene el agua, siguiendo su flujo siempre que pueda dirigirse a plataformas de menor altura. El objetivo de Beto es que el agua llegue a todas las plataformas.

Problema

3.- Orquesta Matemática

Enviado por jesus el 18 de Noviembre de 2022 - 11:52.

Sea n>1 un entero y sea d1<d2<<dm la lista completa de sus divisiores positivos, incluidos 1 y n. Los m instrumentos de una orquesta matemática se disponen a tocar una pieza musical de m segundos, donde el instrumento i tocará una nota de tono di durante si segundos (no necesariamente consecutivos), donde di y si son enteros positivos. Decimos que esta pieza tiene sonoridad S=s1+s2++sm.

Problema

2.- Ataque de torres en un tablero cúbico.

Enviado por Samuel Elias el 12 de Noviembre de 2022 - 23:00.

Sea n un entero positivo. David tiene 6 tableros de ajedrez de n×n que ha dispuesto de manera que formen las 6 caras de un cubo de n×n×n. Se dice que dos casillas a y b de este nuevo tablero cúbico están alineadas si podemos conectarlas por medio de un camino de casillas a=c1,c2,,cm=b de manera que cada pareja de casillas consecutivas en el camino comparten un lado, y los lados que la casilla ci comparte con sus vecinas son lados opuestos del cuadrado ci, para i=2,3,,m1. Diremos que dos torres colocadas sobre el tablero se atacan; si las casillas que ocupan están alineadas. David coloca algunas torres sobre el tablero de forma que ninguna ataque a otra.

Problema

1.- Números Tlahuicas

Enviado por Samuel Elias el 12 de Noviembre de 2022 - 22:31.

Un número x es Tlahuica si existen números primos distintos p1,p2,pk tales que

x=1p1+1p2+...+1pk

Determina el mayor número Tlahuica que satisface las dos propiedades siguientes:

  1. 0 < < 1
  2. existe un número entero 0<m2022 tal que mx es un entero.

Distribuir contenido