Publicaciones Recientes
Preselección Tamaulipas para la XXIV OMM
Preselección estatal, Tamaulipas 2010, XXIV OMM
Distancia a la otra tangente común
Considere dos circunferencias de radios $r$ y $R$, y centros $B$ y $C$, respectivamente. Demostrar que si $A$ es un punto sobre una tangente externa común a las dos circunferencias, y es equidistante a los centros de éstas, entonces la distancia de $A$ a la otra tangente externa común es $r+R$.
Dos desigualdades y una ecuación
a) Demostrar que para todas las parejas $a,b$ de números reales se cumplen las desigualdades:
$$(a^2+1)(b^2+1)\geq(ab+1)^2$$
$$(a^2+1)(b^2+1)\geq(a+b)^2$$
b) Decir, con prueba, para qué valores se cumple la igualdad en cada una de las desigualdades anteriores.
c) Encontrar todas las soluciones $(x,y)$ en números reales, de la ecuación $(x^2+1)(y^2+1)=(xy+1)(x+y)$
No podrían saludar sólo a uno
Cada uno de los 61 competidores en el concurso estatal saludó de mano al menos a otro competidor. Demostrar que alguno de ellos saludó de mano al menos a dos competidores.
Múltiplo de 1001
Demostrar que el número 100...001, el cual tiene doscientos ceros intermedios, es múltiplo de 1001.
Método de áreas (para encontrar razones)
![](https://www.matetam.com/sites/default/files/imagecache/teaser/u5/areas_iguales_0.png)
¿Cómo se demostraba Ceva con áreas?
Sean $L,M,N$ puntos sobre los lados $BC,CA,AB$ del triángulo $ABC$, y las cevianas $AL,BM,CN$ concurrentes en el punto P. Calcular el valor numérico de las sumas de razones siguientes:
$$\frac{PL}{AL}+\frac{PM}{BM}+\frac{PN}{CN}$$
$$\frac{AP}{AL}+\frac{BP}{BM}+\frac{CP}{CN}$$
Diofantina de primos
Encontrar todos los primos $p,q$ que cumplen la ecuación $p+q^2=q+145p^2$
Triángulo y circunferencia circunscrita
Dado el triángulo $ABC$, se consideran los puntos $D$, $E$, y $F$ sobre los segmentos $BC$, $AC$, y $AB$, respectivamente. Demostrar que si los segmentos $AD$, $BE$, y $CF$ pasan por el centro de la circunferencia circunscrita al triángulo, de radio $R$, entonces
$\displaystyle \frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$.
Operan al primo... ¿resultó cuadrado? ¡perfecto!
Encontrar todos los primos $p$ tales que $5^p+4p^4$ es cuadrado perfecto.
![Publicaciones Recientes Distribuir contenido](/misc/feed.png)