Publicaciones Recientes

Problema

Regiones 2009, problema 1

Enviado por jmd el 31 de Mayo de 2009 - 19:30.

¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
 

Problema

El fácil del Regiones 2009

Enviado por jmd el 31 de Mayo de 2009 - 13:21.

¿Cuántos números $abcd$ de 4 dígitos distintos, múltiplos de 36 y menores que 4000 son tales que el producto de $ab$ por $cd$ es múltiplo de 7?

Noticia

Etapa regiones finita... ¡y vámonos recio a la estatal! --el 26 de junio

Enviado por jmd el 29 de Mayo de 2009 - 21:11.

El día de hoy viernes 29 de mayo de 2009 se realizó el concurso regiones de la XXIII OMM tamaulipeca. En los documentos adjuntos pueden ver las tres selecciones que participarán en el concurso estatal el día 26 de junio en La UAMCEH-UAT en Cd Victoria.

Problema

Diofantina condicionada

Enviado por jmd el 27 de Mayo de 2009 - 13:19.

Encontrar todos las parejas de enteros positivos $(x, y)$ que sean solución de la ecuación diofantina $20x+9y=2009$, y que además sean cuadrados perfectos consecutivos. Nota: $(x,y)=(100,1)$ y $(x,y)=(1,221)$ son soluciones de la ecuación diofantina pero no cumplen la condición.
 

Noticia

Recordatorio: concurso regiones, el viernes 29

Enviado por jmd el 26 de Mayo de 2009 - 06:44.

Este viernes 29 de mayo se realizará el concurso regiones de la Olimpiada Mexicana de Matemáticas en Tamaulipas. Los seleccionados ciudades deben confirmar la fecha y la hora con su correspondiente sede:

Problema

Propiedades del máximo común divisor

Enviado por jmd el 24 de Mayo de 2009 - 18:46.

Demostrar las siguientes propiedades del máximo común divisor de dos números $a$ y $b.$ Nota: hay dos formas usuales de notación para el máximo común divisor, MCD$(a,b)$ o simplemente $(a,b)$.

Problema

Trivial --pero no para el novicio

Enviado por jmd el 24 de Mayo de 2009 - 18:19.

Demostrar que $n^2-1$ es múltiplo de 8 para cualquier $ n $ impar no negativo.

Problema

Diofantina en dos variables

Enviado por jmd el 24 de Mayo de 2009 - 17:56.

Encontrar todas las parejas $(x,y)$ de enteros que satisfacen la ecuación diofantina $x^3+y^3=4(x^2y+xy^2)+1.$

Problema

Lema de Euclides --instancia de uso

Enviado por jmd el 24 de Mayo de 2009 - 10:41.

Encontrar todas las parejas $(a,b)$ de enteros positivos para los cuales el producto $(a^4+1)(b^2-1)$ es divisible entre 39 pero sus factores $(a^4+1)$ y $(b^2-1)$ no.
 

Problema

P1. OMM 1987. Suma de dos fracciones que dan entero

Enviado por jesus el 23 de Mayo de 2009 - 14:31.

Consideremos dos fracciones reducidas $\frac{a}{b}$ y $\frac{c}{d}$ con $ b, d>0$ . Si la suma de estas dos fracciones es un número entero entonces $b=d$.

Distribuir contenido