Publicaciones Recientes
Regiones 2009, problema 1
¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
El fácil del Regiones 2009
¿Cuántos números $abcd$ de 4 dígitos distintos, múltiplos de 36 y menores que 4000 son tales que el producto de $ab$ por $cd$ es múltiplo de 7?
Etapa regiones finita... ¡y vámonos recio a la estatal! --el 26 de junio
El día de hoy viernes 29 de mayo de 2009 se realizó el concurso regiones de la XXIII OMM tamaulipeca. En los documentos adjuntos pueden ver las tres selecciones que participarán en el concurso estatal el día 26 de junio en La UAMCEH-UAT en Cd Victoria.
Diofantina condicionada
Encontrar todos las parejas de enteros positivos $(x, y)$ que sean solución de la ecuación diofantina $20x+9y=2009$, y que además sean cuadrados perfectos consecutivos. Nota: $(x,y)=(100,1)$ y $(x,y)=(1,221)$ son soluciones de la ecuación diofantina pero no cumplen la condición.
Recordatorio: concurso regiones, el viernes 29
Este viernes 29 de mayo se realizará el concurso regiones de la Olimpiada Mexicana de Matemáticas en Tamaulipas. Los seleccionados ciudades deben confirmar la fecha y la hora con su correspondiente sede:
Propiedades del máximo común divisor
Demostrar las siguientes propiedades del máximo común divisor de dos números $a$ y $b.$ Nota: hay dos formas usuales de notación para el máximo común divisor, MCD$(a,b)$ o simplemente $(a,b)$.
Trivial --pero no para el novicio
Demostrar que $n^2-1$ es múltiplo de 8 para cualquier $ n $ impar no negativo.
Diofantina en dos variables
Encontrar todas las parejas $(x,y)$ de enteros que satisfacen la ecuación diofantina $x^3+y^3=4(x^2y+xy^2)+1.$
Lema de Euclides --instancia de uso
Encontrar todas las parejas $(a,b)$ de enteros positivos para los cuales el producto $(a^4+1)(b^2-1)$ es divisible entre 39 pero sus factores $(a^4+1)$ y $(b^2-1)$ no.
P1. OMM 1987. Suma de dos fracciones que dan entero
Consideremos dos fracciones reducidas $\frac{a}{b}$ y $\frac{c}{d}$ con $ b, d>0$ . Si la suma de estas dos fracciones es un número entero entonces $b=d$.