Publicaciones Recientes

Noticia

Preselección Tamaulipas para la XXIV OMM

Enviado por jmd el 18 de Junio de 2010 - 18:23.

Preselección estatal, Tamaulipas 2010, XXIV OMM

Problema

Distancia a la otra tangente común

Enviado por jmd el 18 de Junio de 2010 - 12:33.

Considere dos circunferencias de radios $r$ y $R$, y centros $B$ y $C$, respectivamente. Demostrar que si $A$ es un punto sobre una tangente externa común a las dos circunferencias, y es equidistante a los centros de éstas, entonces la distancia de $A$ a la otra tangente externa común es $r+R$.

Problema

Dos desigualdades y una ecuación

Enviado por jmd el 18 de Junio de 2010 - 12:27.

a) Demostrar que para todas las parejas $a,b$ de números reales se cumplen las desigualdades:
$$(a^2+1)(b^2+1)\geq(ab+1)^2$$
$$(a^2+1)(b^2+1)\geq(a+b)^2$$
b) Decir, con prueba, para qué valores se cumple la igualdad en cada una de las desigualdades anteriores.

c) Encontrar todas las soluciones $(x,y)$ en números reales, de la ecuación $(x^2+1)(y^2+1)=(xy+1)(x+y)$

Problema

No podrían saludar sólo a uno

Enviado por jmd el 18 de Junio de 2010 - 12:13.

Cada uno de los 61 competidores en el concurso estatal saludó de mano al menos a otro competidor. Demostrar que alguno de ellos saludó de mano al menos a dos competidores.

Problema

Múltiplo de 1001

Enviado por jmd el 18 de Junio de 2010 - 12:07.

Demostrar que el número 100...001, el cual tiene doscientos ceros intermedios, es múltiplo de 1001.

Entrada de blog

Método de áreas (para encontrar razones)

Enviado por jmd el 16 de Junio de 2010 - 19:18.

Es conocido el hecho de que dos triángulos con la misma base y la misma altura tienen igual área.

Un poco menos conocido es el hecho de que si tienen la misma altura, la razón de sus bases es igual a la razón de sus áreas. Elemental, pero hay que verlo funcionando:

Problema

¿Cómo se demostraba Ceva con áreas?

Enviado por jmd el 16 de Junio de 2010 - 07:16.

Sean $L,M,N$ puntos sobre los lados $BC,CA,AB$ del triángulo $ABC$, y las cevianas $AL,BM,CN$ concurrentes en el punto P. Calcular el valor numérico de las sumas de razones siguientes:

$$\frac{PL}{AL}+\frac{PM}{BM}+\frac{PN}{CN}$$

 

$$\frac{AP}{AL}+\frac{BP}{BM}+\frac{CP}{CN}$$

Problema

Diofantina de primos

Enviado por jmd el 10 de Junio de 2010 - 20:36.

Encontrar todos los primos $p,q$ que cumplen la ecuación $p+q^2=q+145p^2$

Problema

Triángulo y circunferencia circunscrita

Enviado por j_ariel el 5 de Junio de 2010 - 23:46.

Dado el triángulo $ABC$, se consideran los puntos $D$, $E$, y $F$ sobre los segmentos $BC$, $AC$, y $AB$, respectivamente. Demostrar que si los segmentos $AD$, $BE$, y $CF$ pasan por el centro de la circunferencia circunscrita al triángulo, de radio $R$, entonces

$\displaystyle \frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$.

Problema

Operan al primo... ¿resultó cuadrado? ¡perfecto!

Enviado por jmd el 5 de Junio de 2010 - 06:19.

Encontrar todos los primos $p$ tales que $5^p+4p^4$ es cuadrado perfecto.

Distribuir contenido