Marzo 2012
Discusión sobre las coordenadas de un punto
Principio de sustitución
Si dos cantidades son iguales entonces son intercambiables --en el cálculo o demostración.
Parece trivial. Y lo es. Pero hay que aprender a usarlo. Antiguamente se solía decir:
Dos cosas iguales a una tercera son iguales entre sí.
Pero no se trata de aprender a recitarlo, se trata de aprender a usarlo.
Ejemplos:
1. Considere el sistema $x+y=z$, $z=5$
Aquí tenemos que (dos cosas) $x+y$ y 5 son iguales a $z$ (una tercera). Por tanto, $x+y=5$ (son iguales entre sí).
Una propiedad elemental de la divisibilidad
Voy a discutir en este post una propiedad de la divisibilidad que surge cuando la suma de dos números es múltiplo de un primo. Se le podría llamar propiedad de transferencia de la divisibilidad. Incluyo dos instancias de uso en el problem solving de olimpiada.
Una propiedad de transferencia
Considere la suma $a+b$ de dos números enteros y supongamos que es múltiplo de un primo $p$. Puede suceder que ninguno de los sumandos sea múltiplo de $p$. Pero si alguno lo es, entonces también lo es el otro. Formalmente, la propiedad se puede establecer así:
$a,b\in\mathbb{Z},p$ primo, $p|a+b\Rightarrow (p|a\Leftrightarrow p|b)$